Identification of submarine landslides in the Colombian Caribbean Margin (Southern Sinú Fold Belt) using seismic investigations

2021 ◽  
Vol 40 (12) ◽  
pp. 914-922
Author(s):  
Darwin Mateus Tarazona ◽  
Jorge Alonso Prieto ◽  
William Murphy ◽  
Julian Naranjo Vesga

Submarine landslides can be triggered by several processes and involve a variety of mechanisms. These phenomena are important sediment transport processes, but they also constitute a significant geohazard. Mapping of the southwestern Caribbean Sea using 3D seismic data has allowed identification of several submarine landslides in the Colombian Margin in the area dominated by the Southern Sinú Fold Belt (SSFB). A poststack depth-migrated seismic cube survey with a 12.5 by 12.5 m bin spacing was used to identify landslides in an area covering 5746 km2. Landslides were interpreted using a seafloor morphologic parameter identification process and the internal deformation of the slope-forming material, as seen from seismic data. A total of 93 landslides were identified and classified based on their movement styles as follows: 52 rotational, 29 translational, and 12 complex landslides. In addition, 12 distinct deformational zones and a zone of mass transport complex (MTC) were identified. Five different ground condition terrains were interpreted based on landslide type and distribution as well as in geologic structures and seismic reflection analysis. Two main processes seem to influence landslides in the study area. First is the folding and faulting involved in the SSFB evolution. This process results in oversteepened slopes that start as deformational zones and then fail as translational or rotational slides. Those individual landslides progressively become complex landslide zones that follow geologic structural orientation. Second is the continental shelf break erosion by debris flows, which fills in intraslope subbasins and continental rise with several MTCs. According to the results, risk of damage by landslides increases in distances shorter than 4 km along structural ridge foothills in the study zone.

2019 ◽  
Vol 500 (1) ◽  
pp. 531-549 ◽  
Author(s):  
Suzanne Bull ◽  
Joseph A. Cartwright

AbstractThis study shows how simple structural restoration of a discrete submarine landslide lobe can be applied to large-scale, multi-phase examples to identify different phases of slide-lobe development and evaluate their mode of emplacement. We present the most detailed analysis performed to date on a zone of intense contractional deformation, historically referred to as the compression zone, from the giant, multi-phase Storegga Slide, offshore Norway. 2D and 3D seismic data and bathymetry data show that the zone of large-scale (>650 m thick) contractional deformation can be genetically linked updip with a zone of intense depletion across a distance of 135 km. Quantification of depletion and accumulation along a representative dip-section reveals that significant depletion in the proximal region is not accommodated in the relatively mild amount (c. 5%) of downdip shortening. Dip-section restoration indicates a later, separate stage of deformation may have involved removal of a significant volume of material as part of the final stages of the Storegga Slide, as opposed to the minor volumes reported in previous studies.


2012 ◽  
Vol 2012 (1) ◽  
pp. 1-4 ◽  
Author(s):  
Peter Kovesi ◽  
Ben Richardson ◽  
Eun-Jung Holden ◽  
Jeffrey Shragge

Sign in / Sign up

Export Citation Format

Share Document