Performance-Based Seismic Vulnerability Evaluation of Masonry Buildings Using Applied Element Method in a Nonlinear Dynamic-Based Analytical Procedure

2013 ◽  
Vol 29 (2) ◽  
pp. 399-426 ◽  
Author(s):  
Amin Karbassi ◽  
Marie-José Nollet

A thorough four-step performance-based seismic evaluation for a six-story unreinforced masonry building is conducted. Incremental dynamic analysis is carried out using the applied element method to take advantage of its ability to simulate progressive collapse of the masonry structure including out-of-plane failure of the walls. The distribution of the structural responses and inters-tory drifts from the incremental dynamic analysis curves are used to develop both spectral-based (Sa) and displacement-based (interstory drift) fragility curves at three structural performance levels. The curves resulting from three-dimensional (3-D) analyses using unidirectional ground motions are combined using the weakest link theory to propose combined fragility curves. Finally, the mean annual frequencies of exceeding the three performance levels are calculated using the spectral acceleration values at four probability levels 2%, 5%, 10%, and 40% in 50 years. The method is shown to be useful for seismic vulnerability evaluations in regions where little observed damage data exists.

2012 ◽  
Vol 6 (1) ◽  
pp. 121-130 ◽  
Author(s):  
Amin Karbassi ◽  
Pierino Lestuzzi

As an approach to the problem of seismic vulnerability evaluation of existing buildings using the predicted vul-nerability method, numerical models can be applied to define fragility curves of typical buildings which represent building classes. These curves can be then combined with the seismic hazard to calculate the seismic risk for a building class (or individual buildings). For some buildings types, mainly the unreinforced masonry structures, such fragility analysis is complicated and time consuming if a Finite Element-based method is used. The FEM model has to represent the structural geometry and relationships between different structural elements through element connectivity. Moreover, the FEM can face major challenges to represent large displacements and separations for progressive collapse simulations. Therefore, the Applied Element Method which combines the advantages of FEM with that of the Discrete Element Method in terms of accurately modelling a deformable continuum of discrete materials is used in this paper to perform the fragility analysis for unreinforced masonry buildings. To this end, a series of nonlinear dynamic analyses using the AEM has been per-formed for two unreinforced masonry buildings (a 6-storey stone masonry and a 4-storey brick masonry) using more than 50 ground motion records. Both in-plane and out-of-plane failure have been considered in the damage analysis. The dis-tribution of the structural responses and inter-storey drifts are used to develop spectral-based fragility curves for the five European Macroseismic Scale damage grades.


Author(s):  
A. Sandoli ◽  
G. P. Lignola ◽  
B. Calderoni ◽  
A. Prota

AbstractA hybrid seismic fragility model for territorial-scale seismic vulnerability assessment of masonry buildings is developed and presented in this paper. The method combines expert-judgment and mechanical approaches to derive typological fragility curves for Italian residential masonry building stock. The first classifies Italian masonry buildings in five different typological classes as function of age of construction, structural typology, and seismic behaviour and damaging of buildings observed following the most severe earthquakes occurred in Italy. The second, based on numerical analyses results conducted on building prototypes, provides all the parameters necessary for developing fragility functions. Peak-Ground Acceleration (PGA) at Ultimate Limit State attainable by each building’s class has been chosen as an Intensity Measure to represent fragility curves: three types of curve have been developed, each referred to mean, maximum and minimum value of PGAs defined for each building class. To represent the expected damage scenario for increasing earthquake intensities, a correlation between PGAs and Mercalli-Cancani-Sieber macroseismic intensity scale has been used and the corresponding fragility curves developed. Results show that the proposed building’s classes are representative of the Italian masonry building stock and that fragility curves are effective for predicting both seismic vulnerability and expected damage scenarios for seismic-prone areas. Finally, the fragility curves have been compared with empirical curves obtained through a macroseismic approach on Italian masonry buildings available in literature, underlining the differences between the methods.


2017 ◽  
Vol 4 ◽  
pp. 24-30
Author(s):  
Shyam Sundar Basukala ◽  
Prem Nath Maskey

Historic buildings of Nepal are mainly constructed from masonry structure. Since masonry structures are weak in tension which leads to the failure of structure. So, to avoid possible damage in environment lives and property it is urgent to conduct vulnerability assessments. Seismic vulnerability of historic masonry buildings constructed in Bhaktapur at Byasi area is carried out for the case study. Five load bearing masonry buildings were selected out of 147 buildings considering opening percentage, storey and type of floor for modeling in SAP 2000 V10 Various methods of rapid visual screening (FEMA 154, EMS 98) are used to determine the vulnerability of the selected building. The Selected Building response is carried out by linear time history analysis. The seismic vulnerability of masonry structures is determined in terms of fragility curves which represent the probability of failure or damage due to various levels of strong ground motions for different damage state slight, moderate, extensive and collapse. From the result of Rapid Visual Screening (RVS) and Fragility curves of the buildings it is found that whole, buildings are found vulnerable from future earthquake.


2021 ◽  
Author(s):  
Antonio Sandoli ◽  
Gian Piero Lignola ◽  
Bruno Calderoni ◽  
Andrea Prota

Abstract A hybrid seismic fragility model for territorial-scale seismic vulnerability assessment of masonry buildings is developed and presented in this paper. The method combines expert-judgment and mechanical approaches to derive typological fragility curves for Italian residential masonry building stock. The first classifies Italian masonry buildings in five different typological classes as function of age of construction, structural typology, and seismic behaviour and damaging of buildings observed following the most severe earthquakes occurred in Italy. The second, based on numerical analyses results conducted on building prototypes, provides all the parameters necessary for developing fragility functions.Peak-Ground Acceleration (PGA) at Ultimate Limit State attainable by each building’s class has been chosen as an Intensity Measure (IM) to represent fragility curves: three types of curve have been developed, each referred to mean, maximum and minim value of PGAs defined for each buildings class.To represent the expected damage scenario for increasing earthquake intensities, a correlation between PGAs and Mercalli-Cancani-Sieber (MCS) macroseismic intensity scale has been used and the corresponding fragility curves developed.Results show that the proposed building’s classes are representative of the Italian masonry building stock and that fragility curves are effective for predicting both seismic vulnerability and expected damage scenarios for seismic-prone areas. Finally, the fragility curves have been compared with empirical curves obtained through a macroseismic approach on Italian masonry buildings available in literature, underlining the differences between the methods.


Sign in / Sign up

Export Citation Format

Share Document