scholarly journals Impaired response of biliary lipid secretion to a lithogenic diet in phosphatidylcholine transfer protein-deficient mice

2004 ◽  
Vol 46 (3) ◽  
pp. 422-431 ◽  
Author(s):  
Michele K. Wu ◽  
Hideyuki Hyogo ◽  
Suresh K. Yadav ◽  
Phyllis M. Novikoff ◽  
David E. Cohen
2000 ◽  
Vol 118 (4) ◽  
pp. A1006 ◽  
Author(s):  
Silvana Zanlungo ◽  
Ludwig Amigo ◽  
Hegaly Mendoza ◽  
Francisco Morera ◽  
Juan Francisco Miquel ◽  
...  

1999 ◽  
Vol 276 (3) ◽  
pp. G751-G760 ◽  
Author(s):  
David Q.-H. Wang ◽  
Frank Lammert ◽  
David E. Cohen ◽  
Beverly Paigen ◽  
Martin C. Carey

Cholic acid is a critical component of the lithogenic diet in mice. To determine its pathogenetic roles, we fed chow or 1% cholesterol with or without 0.5% cholic acid to C57L/J male mice, which because of lith genes have 100% gallstone prevalence rates. After 1 yr on the diets, we measured bile flow, biliary lipid secretion rates, hepatic cholesterol and bile salt synthesis, and intestinal cholesterol absorption. After hepatic conjugation with taurine, cholate replaced most tauro-β-muricholate in bile. Dietary cholic acid plus cholesterol increased bile flow and biliary lipid secretion rates and reduced cholesterol 7α-hydroxylase activity significantly mostly via deoxycholic acid, cholate’s bacterial 7α-dehydroxylation product but did not downregulate cholesterol biosynthesis. Intestinal cholesterol absorption doubled, and biliary cholesterol crystallized as phase boundaries shifted. Feeding mice 1% cholesterol alone produced no lithogenic or homeostatic effects. We conclude that in mice cholic acid promotes biliary cholesterol hypersecretion and cholelithogenesis by enhancing intestinal absorption, hepatic bioavailability, and phase separation of cholesterol in bile.


2005 ◽  
Vol 289 (3) ◽  
pp. G456-G461 ◽  
Author(s):  
Michele K. Wu ◽  
David E. Cohen

Phosphatidylcholine transfer protein (PC-TP) is a member of the steroidogenic acute regulatory transfer protein-related domain superfamily and is enriched in liver. To explore a role for PC-TP in hepatic cholesterol metabolism, Pctp −/− and wild-type C57BL/6J mice were fed a standard chow diet or a high-fat, high-cholesterol lithogenic diet. In chow-fed Pctp−/− mice, acyl CoA:cholesterol acyltransferase (Acat) activity was markedly increased, 3-hydroxy-3-methylglutaryl-CoA reductase activity was unchanged, and cholesterol 7α-hydroxylase activity was reduced. Consistent with increased Acat activity, esterified cholesterol concentrations in livers of Pctp−/− mice were increased, whereas unesterified cholesterol concentrations were reduced. Hepatic phospholipid concentrations were also decreased in the absence of PC-TP and consequently, unesterified cholesterol-to-phospholipid ratios in liver remained unchanged. The lithogenic diet downregulated 3-hydroxy-3-methylglutaryl-CoA reductase in wild-type and Pctp−/− mice, whereas Acat was increased only in wild-type mice. In response to the lithogenic diet, a greater reduction in cholesterol 7α-hydroxylase activity in Pctp−/− mice could be attributed to increased size and hydrophobicity of the bile salt pool. Despite higher hepatic phospholipid concentrations, the unesterified cholesterol-to-phospholipid ratio increased. The lack of Acat upregulation suggests that, in the setting of the dietary challenge, the capacity for esterification to defend against hepatic accumulation of unesterified cholesterol was exceeded in the absence of PC-TP expression. We speculate that regulation of cholesterol homeostasis is a physiological function of PC-TP in liver, which can be overcome with a cholesterol-rich lithogenic diet.


Author(s):  
Elena Bravo ◽  
Alfredo Cantafora ◽  
Carla Cicchini ◽  
Michael Avella ◽  
Kathleen M. Botham

2014 ◽  
Vol 34 (suppl_1) ◽  
Author(s):  
Yang Yu

Phospholipid transfer protein (PLTP) plays important roles in macrophage mediated inflammation. In the current study we observed that endogenous PLTP modulated pro-inflammatory pathways in macrophage. With the presence of LPS, peritoneal derived macrophage (PDM) or bone marrow derived macrophage (BMDM) from PLTP deficient mice (PLTP-/-) expressed significantly higher level of pro-inflammatory cytokines compared with PDM or BMDM from wild-type mice (WT), respectively. LPS induced TNFα expression in PLTP-/- BMDM or PLTP knockdown RAW264.7 were suppressed by (5Z)-7-Oxozeaenol, a TAK1 inhibitor, suggesting PLTP deficiency enhanced the expression of pro-inflammatory cytokines via TAK1-NFκB pathway in macrophage. Furthermore, abundance of TLR4 on the membrane was dramatically increased in BMDM from PLTP-/- compared with WT. In addition, inhibition of ABCA1 by chemical inhibitor, glyburide, did not reduce nuclear levels of active STAT3 of BMDM, which indicated that no autocrine PLTP triggered ABCA1-JAK2-STAT3 pathway in this study. In conclusion, PLTP deficiency or low expression may enhance LPS induced pro-inflammatory cytokines expression via TLR4-TAK1-NFκB pathway in macrophage.


Sign in / Sign up

Export Citation Format

Share Document