Age and Experience Affect the Recruitment of New Neurons to the Song System of Zebra Finches during the Sensitive Period for Song Learning: Ditto for Vocal Learning in Humans?

2004 ◽  
Vol 1021 (1) ◽  
pp. 404-409 ◽  
Author(s):  
LINDA WILBRECHT ◽  
FERNANDO NOTTEBOHM
2021 ◽  
Author(s):  
Carlos A. Rodriguez-Saltos ◽  
Aditya Bhise ◽  
Prasanna Karur ◽  
Ramsha Nabihah Khan ◽  
Sumin Lee ◽  
...  

In songbirds, learning to sing is a highly social process that likely involves social reward. Here, we hypothesized that the degree to which a juvenile songbird learns a song depends on the degree to which it finds that song rewarding to hear during vocal development. We tested this hypothesis by measuring song preferences in young birds during song learning and then analyzing their adult songs. Song preferences were measured in an operant key-pressing assay. Juvenile male zebra finches (Taeniopygia guttata) had access to two keys, each of which was associated with a higher likelihood of playing the song of their father or that of another familiar adult ("neighbor"). To minimize the effects of exposure on learning, we implemented a reinforcement schedule that allowed us to detect preferences while balancing exposure to each song. On average, the juveniles significantly preferred the father's song early during song learning, before they were themselves singing. At around post-hatch day 60, their preference shifted to the neighbor's song. At the end of the song learning period, we recorded the juveniles' songs and compared them to the father's and the neighbor's song. All of the birds copied father's song. The accuracy with which the father's song was imitated was positively correlated with the peak strength of the preference for the father's song during the sensitive period. Our results show that preference for a social stimulus, in this case a vocalization, predicted social learning during development.


2020 ◽  
Author(s):  
Ha Na Choe ◽  
Jeevan Tewari ◽  
Kevin W. Zhu ◽  
Matthew Davenport ◽  
Hiroaki Matsunami ◽  
...  

AbstractSex hormones alter the organization of the brain during early development and coordinate various behaviors throughout life. In zebra finches, song learning is limited to males, and the associated song learning brain pathway only matures in males and atrophies in females. This atrophy can be reversed by giving females exogenous estrogen during early post-hatch development, but whether normal male song system development requires estrogen is uncertain. For the first time in songbirds, we administered exemestane, a potent third generation estrogen synthesis inhibitor, from the day of hatching until adulthood. We examined the behavior, brain, and transcriptome of individual song nuclei of these pharmacologically manipulated animals. We found that males with long-term exemestane treatment had diminished male-specific plumage, impaired song learning, but retained normal song nuclei sizes and most, but not all, of their specialized transcriptome. Consistent with prior findings, females with long-term estrogen treatment retained a functional song system, and we further observed their song nuclei had specialized gene expression profiles similar, but not identical to males. We also observed that different song nuclei responded to estrogen manipulation differently, with Area X in the striatum being the most altered by estrogen modulation. These findings support the hypothesis that song learning is an ancestral trait in both sexes, which was subsequently suppressed in females of some species, and that estrogen has come to play a critical role in modulating this suppression as well as refinement of song learning.


2021 ◽  
Author(s):  
Judith M. Varkevisser ◽  
Ralph Simon ◽  
Ezequiel Mendoza ◽  
Martin How ◽  
Idse van Hijlkema ◽  
...  

AbstractBird song and human speech are learned early in life and for both cases engagement with live social tutors generally leads to better learning outcomes than passive audio-only exposure. Real-world tutor–tutee relations are normally not uni- but multimodal and observations suggest that visual cues related to sound production might enhance vocal learning. We tested this hypothesis by pairing appropriate, colour-realistic, high frame-rate videos of a singing adult male zebra finch tutor with song playbacks and presenting these stimuli to juvenile zebra finches (Taeniopygia guttata). Juveniles exposed to song playbacks combined with video presentation of a singing bird approached the stimulus more often and spent more time close to it than juveniles exposed to audio playback only or audio playback combined with pixelated and time-reversed videos. However, higher engagement with the realistic audio–visual stimuli was not predictive of better song learning. Thus, although multimodality increased stimulus engagement and biologically relevant video content was more salient than colour and movement equivalent videos, the higher engagement with the realistic audio–visual stimuli did not lead to enhanced vocal learning. Whether the lack of three-dimensionality of a video tutor and/or the lack of meaningful social interaction make them less suitable for facilitating song learning than audio–visual exposure to a live tutor remains to be tested.


2005 ◽  
Vol 94 (6) ◽  
pp. 3698-3707 ◽  
Author(s):  
Sarah W. Bottjer

Developmental changes in synaptic properties may act to limit neural and behavioral plasticity associated with sensitive periods. This study characterized synaptic maturation in a glutamatergic thalamo-cortical pathway that is necessary for vocal learning in songbirds. Lesions of the projection from medial dorsolateral nucleus of the thalamus (DLM) to the cortical nucleus lateral magnocellular nucleus of the anterior nidopallium (LMAN) greatly disrupt song behavior in juvenile birds during early stages of vocal learning. However, such lesions lose the ability to disrupt vocal behavior in normal birds at 60–70 days of age, around the time that selective auditory tuning for each bird’s own song (BOS) emerges in LMAN neurons. This pattern has suggested that LMAN is involved in processing song-related information and evaluating the degree to which vocal motor output matches the tutor song to be learned. Analysis of reversed excitatory postsynaptic currents at DLM→LMAN synapses in in vitro slice preparations revealed a pronounced N-methyl-d-aspartate receptor (NMDAR)-mediated component in both juvenile and adult cells with no developmental decrease in the relative contribution of NMDARs to synaptic transmission. However, the synaptic failure rate at DLM→LMAN synapses in juvenile males during the sensitive period for song learning was significantly lower at depolarized potentials than at hyperpolarized potentials. In contrast, the failure rate at DLM→LMAN synapses did not differ at hyper- versus depolarized holding potentials in adult males that had completed the acquisition of a stereotyped song. This pattern indicates that juvenile cells have a higher incidence of silent (NMDAR-only) synapses, which are postsynaptically silent at hyperpolarized potentials due to the voltage-dependent gating of NMDARs. Thus the decreased involvement of the LMAN pathway in vocal behavior is mirrored by a decline in the incidence of silent synapses but not by changes in the relative number of NMDA and AMPA receptors at DLM→LMAN synapses. These findings suggest that a developmental decrease in silent synapses within LMAN may represent a neural correlate of behavioral plasticity during song learning.


2015 ◽  
Vol 75 (12) ◽  
pp. 1315-1338 ◽  
Author(s):  
Christopher R. Olson ◽  
Lisa K. Hodges ◽  
Claudio V. Mello

2017 ◽  
Author(s):  
Ludivine Pidoux ◽  
Pascale Leblanc ◽  
Arthur Leblois

AbstractSpeech is a complex sensorimotor skill, and vocal learning involves both the basal ganglia and the cerebellum. These subcortical structures interact indirectly through their respective loops with thalamo-cortical and brainstem networks, and directly via subcortical pathways, but the role of their interaction during sensorimotor learning remains undetermined. While songbirds and their song-dedicated basal ganglia-thalamo-cortical circuitry offer a unique opportunity to study subcortical circuits involved in vocal learning, the cerebellar contribution to avian song learning remains unknown. We demonstrate that the cerebellum provides a strong input to the song-related basal ganglia nucleus in zebra finches. Cerebellar signals are transmitted to the basal ganglia via a disynaptic connection through the thalamus and then conveyed to their cortical target and to the premotor nucleus controlling song production. Finally, cerebellar lesions impair juvenile song learning, opening new opportunities to investigate how subcortical interactions between the cerebellum and basal ganglia contribute to sensorimotor learning.


2012 ◽  
Vol 107 (4) ◽  
pp. 1142-1156 ◽  
Author(s):  
Vanessa C. Miller-Sims ◽  
Sarah W. Bottjer

Experience-dependent changes in neural connectivity underlie developmental learning and result in life-long changes in behavior. In songbirds axons from the cortical region LMANcore (core region of lateral magnocellular nucleus of anterior nidopallium) convey the output of a basal ganglia circuit necessary for song learning to vocal motor cortex [robust nucleus of the arcopallium (RA)]. This axonal projection undergoes remodeling during the sensitive period for learning to achieve topographic organization. To examine how auditory experience instructs the development of connectivity in this pathway, we compared the morphology of individual LMANcore→RA axon arbors in normal juvenile songbirds to those raised in white noise. The spatial extent of axon arbors decreased during the first week of vocal learning, even in the absence of normal auditory experience. During the second week of vocal learning axon arbors of normal birds showed a loss of branches and varicosities; in contrast, experience-deprived birds showed no reduction in branches or varicosities and maintained some arbors in the wrong topographic location. Thus both experience-independent and experience-dependent processes are necessary to establish topographic organization in juvenile birds, which may allow birds to modify their vocal output in a directed manner and match their vocalizations to a tutor song. Many LMANcore axons of juvenile birds, but not adults, extended branches into dorsal arcopallium (Ad), a region adjacent to RA that is part of a parallel basal ganglia pathway also necessary for vocal learning. This transient projection provides a point of integration between the two basal ganglia pathways, suggesting that these branches convey corollary discharge signals as birds are actively engaged in learning.


2013 ◽  
Vol 9 (5) ◽  
pp. 20130625 ◽  
Author(s):  
Marcelo Araya-Salas ◽  
Timothy Wright

Vocal learning in birds is typically restricted to a sensitive period early in life, with the few exceptions reported in songbirds and parrots. Here, we present evidence of open-ended vocal learning in a hummingbird, the third avian group with vocal learning. We studied vocalizations at four leks of the long-billed hermit Phaethornis longirostris during a four-year period. Individuals produce a single song repertoire, although several song-types can coexist at a single lek. We found that nine of 49 birds recorded on multiple days (18%) changed their song-type between consecutive recordings. Three of these birds replaced song-types twice. Moreover, the earliest estimated age when song replacement occurred ranged from 186 to 547 days (mean = 307 days) and all nine birds who replaced song-types produced a crystallized song before replacement. The findings indicate that song-type replacement is distinct from an initial early learning sensitive period. As half of lekking males do not survive past the first year of life in this species, song learning may well extend throughout the lifespan. This behaviour would be convergent to vocal learning programmes found in parrots and songbirds.


Sign in / Sign up

Export Citation Format

Share Document