scholarly journals Collaborative Model for International Telehealth: High Dose Rate Brachytherapy Training for Emerging Radiation Oncology Centers in Lower- and Middle-Income Countries

2020 ◽  
Vol 6 (Supplement_1) ◽  
pp. 51-52
Author(s):  
Jeremy Hatcher ◽  
Adam Shulman ◽  
Claire Dempsey ◽  
Betty Chang ◽  
Sameeksha Malhotra ◽  
...  

PURPOSE High dose rate (HDR) brachytherapy is a critical treatment modality—both palliative and curative—for gynecologic malignancies that significantly burden low- and middle-income countries (LMICs). Many of these countries currently have limited capacity to provide necessary brachytherapy treatment. To bridge this gap in LMICs in North Africa and the Middle East, nonprofits Rayos Contra Cancer and Radiating Hope evaluated the efficacy, cost, and feasibility of a pilot HDR brachytherapy continuing medical education curriculum to selected regional cancer centers via videoconferencing. METHODS Rayos Contra Cancer and Radiating Hope recruited a global team of HDR brachytherapy content experts. They developed a 16-week curriculum and recruited 10 regional cancer center partners in LMICs throughout the Middle East, Africa, and Nepal. The curriculum included 17 sessions shared via live Zoom videoconferences. A lead correspondent was assigned for communication at each center. Attendance was taken during each call, and pre- and postsession Likert-scale (1 to 5 points) surveys were collected from participants that assessed their confidence in 15 practical competencies in HDR brachytherapy and overall confidence in their ability to provide services and teach others. RESULTS A total of 326 attendance hours was recorded during the curriculum. Among 46 participants, the average paired confidence scores increased pre- versus postcurriculum in all 15 practical competencies, with an average improvement of 1.2 out of 5 and significant P values in all 15 topics. Absolute improvements were largest for confidence in applicator commissioning (2.3 to 3.8, P = .0015), TPS commissioning (2.2 to 3.7, P = .0010), and commissioning an HDR machine (2.2 to 4.0, P = .00096). Participant confidence significantly increased in ability to provide services (3.5 to 4.2, P = .0023) and teach others (3.4 to 3.9, P = .013). There was no cost to provide this training, and more than 4,300 patients are treated annually with HDR brachytherapy at participating centers. CONCLUSION This novel low-cost telehealth model for HDR brachytherapy training is a promising vehicle for advancing cancer care in LMICs. Postcourse surveys demonstrated increased confidence in both providing care and teaching in HDR brachytherapy, and sessions were well attended. A video-based telehealth teaching platform enabled expert HDR brachytherapy providers and physicists to reach growing cancer centers worldwide.

2020 ◽  
pp. 1803-1812
Author(s):  
Jeremy B. Hatcher ◽  
Oluwadamilola Oladeru ◽  
Betty Chang ◽  
Sameeksha Malhotra ◽  
Megan Mcleod ◽  
...  

PURPOSE Our objective was to demonstrate the efficacy of a telehealth training course on high-dose-rate (HDR) brachytherapy for gynecologic cancer treatment for clinicians in low- and middle-income countries (LMICs) METHODS A 12-week course consisting of 16 live video sessions was offered to 10 cancer centers in the Middle East, Africa, and Nepal. A total of 46 participants joined the course, and 22 participants, on average, attended each session. Radiation oncologists and medical physicists from 11 US and international institutions prepared and provided lectures for each topic covered in the course. Confidence surveys of 15 practical competencies were administered to participants before and after the course. Competencies focused on HDR commissioning, shielding, treatment planning, radiobiology, and applicators. Pre- and post-program surveys of provider confidence, measured by 5-point Likert scale, were administered and compared. RESULTS Forty-six participants, including seven chief medical physicists, 16 senior medical physicists, five radiation oncologists, and three dosimetrists, representing nine countries attended education sessions. Reported confidence scores, both aggregate and paired, demonstrated increases in confidence in all 15 competencies. Post-curriculum score improvement was statistically significant ( P < .05) for paired respondents in 11 of 15 domains. Absolute improvements were largest for confidence in applicator commissioning (2.3 to 3.8, P = .009), treatment planning system commissioning (2.2 to 3.9, P = .0055), and commissioning an HDR machine (2.2 to 4.0, P = .0031). Overall confidence in providing HDR brachytherapy services safely and teaching other providers increased from 3.1 to 3.8 and 3.0 to 3.5, respectively. CONCLUSION A 12-week, low-cost telehealth training program on HDR brachytherapy improved confidence in treatment delivery and teaching for clinicians in 10 participating LMICs.


Brachytherapy ◽  
2007 ◽  
Vol 6 (2) ◽  
pp. 86
Author(s):  
Michel I. Ghilezan ◽  
J. Vito Antonucci ◽  
Gary S. Gustafson ◽  
Peter Chen ◽  
Michelle Wallace ◽  
...  

Author(s):  
P.J. Anderson ◽  
R.J. Mark ◽  
R.S. Akins ◽  
T.R. Neumann ◽  
S. Gurley ◽  
...  

Brachytherapy ◽  
2006 ◽  
Vol 5 (2) ◽  
pp. 91
Author(s):  
Matthew Biagioli ◽  
B-Chen Wen ◽  
Brandon Patton ◽  
Caroline Hoffman ◽  
Mark Harvey

2021 ◽  
Vol 1 (3) ◽  
pp. 77-106
Author(s):  
Amir Shahabaz ◽  
Muhammad Afzal

A technique of radiation therapy delivery in which the radioactive sources are placed very close or even inside the target volume is called Brachytherapy (BT). Brachytherapy is a type of radiation therapy. It destroys cancer cells by making it hard for them to multiply. In this technique, a radiation source is placed directly into or near a tumour. High dose-rate brachytherapy is also known as HDR brachytherapy, or temporary brachytherapy. It is a type of internal radiotherapy. HDR was developed to reduce the risk of cancer recurrence while shortening the amount of time it takes to get radiation treatment. HDR also limits the dose of radiation (associated side effects) to surrounding normal tissue. The important benefits of HDR brachytherapy include extremely precise radiation therapy delivered internally, used alone or after surgery to help prevent cancer recurrence, convenient treatments that are usually pain-free, and a reduction in the risk of common short- and long-term side effects. Currently, tumour dose, as well as doses of the surrounding normal structures, can be evaluated accurately, and high-dose-rate brachytherapy enables three-dimensional image guidance. The biological disadvantages of high-dose-rate were overcome by fractional irradiation. In the definitive radiation therapy of cervical cancer, high-dose-rate brachytherapy is most necessary. Most patients feel little discomfort during brachytherapy. There is no residual radioactivity when the treatment is completed. A patient may be able to go home shortly after the procedure, resuming his normal activities with few restrictions. An advantage of brachytherapy is to deliver a high dose to the tumour during treatment and save the surrounding normal tissues. High-dose-rate (HDR) brachytherapy has great promise with respect to proper case selection and delivery technique because it eliminates radiation exposure, can be performed on an outpatient basis and allows short treatment times. Additionally, by varying the dwell time at each dwell position, the use of a single-stepping source allows optimization of dose distribution. As the short treatment times do not allow any time for correction of errors, and mistakes can result in harm to patients, so the treatments must be executed carefully by using HDR brachytherapy. Refinements will occur primarily in the integration of imaging (computed tomography, magnetic resonance imaging, intraoperative ultrasonography) and optimization of dose distribution and it is expected that the use of HDR brachytherapy will greatly expand over the next decade. Various factors in the development of well-controlled randomized trials addressing issues of efficacy, quality of life, toxicity and costs-versus-benefits will ultimately define the role of HDR brachytherapy in the therapeutic armamentarium. Surrounding healthy tissues are not affected by the radiation due to the ability to target radiation therapy at high dose rates directly to the tumour. Treatment to be delivered as an outpatient in as few as one to five sessions is also allowed by this targeted high dose approach. HDR brachytherapy is the most precision radiation therapy, even better than carbon ion therapy. At the time of invasive placement of the radiation source into the tumour area, brachytherapy requires the skills and techniques of radiation oncologists.


2016 ◽  
Vol 15 (3) ◽  
pp. 283-289 ◽  
Author(s):  
Manish K. Goyal ◽  
T. S. Kehwar ◽  
Jayanand Manjhi ◽  
Jerry L. Barker ◽  
Bret H. Heintz ◽  
...  

AbstractPurposeThis study evaluated dosimetric parameters for cervical high-dose-rate (HDR) brachytherapy treatment using varying dose prescription methods.MethodsThis study includes 125 tandem-based cervical HDR brachytherapy treatment plans of 25 patients who received HDR brachytherapy. Delineation of high-risk clinical target volumes (HR-CTVs) and organ at risk were done on original computed tomographic images. The dose prescription point was defined as per International Commission in Radiation Units and Measurements Report Number 38 (ICRU-38), also redefined using American Brachytherapy Society (ABS) 2011 criteria. The coverage index (V100) for each HR-CTV was calculated using dose volume histogram parameters. A plot between HR-CTV and V100was plotted using the best-fit linear regression line (least-square fit analysis).ResultsMean prescribed dose to ICRU-38 Point A was 590·47±28·65 cGy, and to ABS Point A was 593·35±30·42 cGy. There was no statistically significant difference between planned ICRU-38 and calculated ABS Point A doses (p=0·23). The plot between HR-CTV and V100is well defined by the best-fit linear regression line with a correlation coefficient of 0·9519.ConclusionFor cervical HDR brachytherapy, dose prescription to an arbitrarily defined point (e.g., Point A) does not provide consistent coverage of HR-CTV. The difference in coverage between two dose prescription approaches increases with increasing CTV. Our ongoing work evaluates the dosimetric consequences of volumetric dose prescription approaches for these patients.


Sign in / Sign up

Export Citation Format

Share Document