Corticosteroid-induced magnetic resonance imaging changes in patients with recurrent malignant glioma.

1994 ◽  
Vol 12 (9) ◽  
pp. 1886-1889 ◽  
Author(s):  
C J Watling ◽  
D H Lee ◽  
D R Macdonald ◽  
J G Cairncross

PURPOSE We studied corticosteroid-induced magnetic resonance (MR) scan changes in patients with recurrent malignant glioma to determine if corticosteroid therapy started concurrently with investigational treatment might yield false-positive responses. PATIENTS AND METHODS Ten symptomatic patients not on corticosteroids when malignant glioma recurred had a baseline MR scan performed before corticosteroid treatment, followed by serial scans at weekly intervals for 1 month while on dexamethasone (16 mg/d). The maximum cross-sectional areas and volumes of the gadolinium-enhancing regions (tumor) and T2-weighted abnormalities (tumor plus edema) were compared quantitatively and qualitatively for each series of scans. RESULTS Nine of 10 patients (90%) had a measurable reduction in the size of the gadolinium-enhancing region or T2-weighted abnormality with corticosteroid treatment. The maximum cross-sectional area and volume of the gadolinium-enhancing region decreased by at least 25% in three of 10 patients (30%). The maximum cross-sectional area and volume of the T2-weighted abnormality decreased by at least 25% in five of 10 patients (50%). Maximum measurable radiologic improvement was evident within 2 weeks in most patients. MR scans were judged improved by the reporting neuroradiologist in seven of 10 (70%). These subjective visual improvements were also evident within 2 weeks, but generally described as slight or modest. CONCLUSION Corticosteroid-induced MR scan reductions in tumor size may confound the assessment of response of recurrent malignant gliomas to investigational agents. For patients who start corticosteroids for symptom control, investigational treatment should be delayed until a new baseline MR image is established 2 weeks later. Response is then judged by comparing subsequent MR scans with the new corticosteroid-influenced baseline image.

1994 ◽  
Vol 7 (5) ◽  
pp. 388???393 ◽  
Author(s):  
Chiaki Hamanishi ◽  
Noboru Matukura ◽  
Masahiko Fujita ◽  
Mituo Tomihara ◽  
Seisuke Tanaka

2021 ◽  
pp. 028418512110032
Author(s):  
Henrique Mansur ◽  
Guilherme Estanislau ◽  
Marcos de Noronha ◽  
Rita de Cassia Marqueti ◽  
Emerson Fachin-Martins ◽  
...  

Background The cross-sectional area (CSA) records make an essential measurement for determining the mechanical properties of tendons, such as stress and strength. However, there is no consensus regarding the best method to record the CSA from different tendons. Purpose To determine intra- and inter-rater reliability for CSA measures from magnetic resonance imaging (MRI) of the following tendons: tibialis anterior; tibialis posterior; fibularis longus and brevis; and Achilles. Material and Methods We designed an observational study with repeated measures taken from a convenience sample of 20 participants diagnosed with acute or chronic ankle sprain. Two independent raters took three separate records from the CSA of ankle tendon images of each MRI slice. The intra-class correlation coefficient (ICC) and 95% limits of agreement (LoA) defined the quality (associations) and magnitude (differences), respectively, of intra- and inter-rater reliability on the measures plotted by the Bland–Altman method. Results Data showed very high intra- and inter-rater correlations for measures taken from all tendons analyzed (ICC 0.952–0.999). It also revealed an excellent agreement between raters (0.12%–2.3%), with bias no higher than 2 mm2 and LoA in the range of 4.4–7.9 mm2. The differences between repeated measures recorded from the thinnest tendons (fibularis longus and brevis) revealed the lowest bias and narrowest 95% LoA. Conclusion Reliability for the CSA of ankle tendons measured from MRI taken by independent rates was very high, with the smallest differences between raters observed when the thinnest tendon was analyzed.


2021 ◽  
Vol 20 (1) ◽  
pp. 50-54
Author(s):  
Thyago Guirelle Silva ◽  
Rodrigo Augusto do Amaral ◽  
Raphael Rezende Pratali ◽  
Luiz Pimenta

ABSTRACT Objective: To verify the effectiveness of indirect decompression after lateral access fusion in patients with high pelvic incidence. Methods: A retrospective, non-comparative, non-randomized analysis of 22 patients with high pelvic incidence who underwent lateral access fusion, 11 of whom were male and 11 female, with a mean age of 63 years (52-74), was conducted. Magnetic resonance exams were performed within one year after surgery. The cross-sectional area of the thecal sac, anterior and posterior disc heights, and bilateral foramen heights, measured pre- and postoperatively in axial and sagittal magnetic resonance images, were analyzed. The sagittal alignment parameters were measured using simple radiographs. The clinical results were evaluated using the ODI and VAS (back and lower limbs) questionnaires. Results: In all cases, the technique was performed successfully without neural complications. The mean cross-sectional area increased from 126.5 mm preoperatively to 174.3 mm postoperatively. The mean anterior disc height increased from 9.4 mm preoperatively to 12.8 mm postoperatively, while the posterior disc height increased from 6.3 mm preoperatively to 8.1 mm postoperatively. The mean height of the right foramen increased from 157.3 mm in the preoperative period to 171.2 mm in the postoperative period and that of the left foramen increased from 139.3 mm in the preoperative to 158.9 mm in the postoperative. Conclusions: This technique is capable of correcting misalignment in spinal deformity, achieving fusion and promoting the decompression of neural elements. Level of evidence III; Retrospective study.


2020 ◽  
Vol 6 (1) ◽  
Author(s):  
Jesse J. Rohr ◽  
Stuart Sater ◽  
Austin M. Sass ◽  
Karina Marshall-Goebel ◽  
Robert J. Ploutz-Snyder ◽  
...  

Abstract A subset of long-duration spaceflight astronauts have experienced ophthalmic abnormalities, collectively termed spaceflight-associated neuro-ocular syndrome (SANS). Little is understood about the pathophysiology of SANS; however, microgravity-induced alterations in intracranial pressure (ICP) due to headward fluid shifts is the primary hypothesized contributor. In particular, potential changes in optic nerve (ON) tortuosity and ON sheath (ONS) distension may indicate altered cerebrospinal fluid dynamics during weightlessness. The present longitudinal study aims to provide a quantitative analysis of ON and ONS cross-sectional areas, and ON deviation, an indication of tortuosity, before and after spaceflight. Ten astronauts undergoing ~6-month missions on the International Space Station (ISS) underwent high-resolution magnetic resonance imaging (MRI) preflight and at five recovery time points extending to 1 year after return from the ISS. The mean changes in ON deviation, ON cross-sectional area, and ONS cross-sectional area immediately post flight were −0.14 mm (95% CI: −0.36 to 0.08, Bonferroni-adjusted P = 1.00), 0.13 mm2 (95% CI −0.66 to 0.91, Bonferroni-adjusted P = 1.00), and −0.22 mm2 (95% CI: −1.78 to 1.34, Bonferroni-adjusted P = 1.00), respectively, and remained consistent during the recovery period. Terrestrially, ONS distension is associated with increased ICP; therefore, these results suggest that, on average, ICP was not pathologically elevated immediately after spaceflight. However, a subject diagnosed with optic disc edema (Frisen Grade 1, right eye) displayed increased ONS area post flight, although this increase is relatively small compared to clinical populations with increased ICP. Advanced quantitative MRI-based assessment of the ON and ONS could help our understanding of SANS and the role of ICP.


2010 ◽  
Vol 51 (3) ◽  
pp. 302-308 ◽  
Author(s):  
Yi-Chih Hsu ◽  
Ru-Yu Pan ◽  
Yen-Yu I. Shih ◽  
Meei-Shyuan Lee ◽  
Guo-Shu Huang

Background: Redundancy of the capsule has been considered to be the main pathologic condition responsible for atraumatic posteroinferior multidirectional shoulder instability; however, there is a paucity of measurements providing quantitative diagnosis. Purpose: To determine the significance of superior-capsular elongation and its relevance to atraumatic posteroinferior multidirectional shoulder instability at magnetic resonance (MR) arthrography. Material and Methods: MR arthrography was performed in 21 patients with atraumatic posteroinferior multidirectional shoulder instability and 21 patients without shoulder instability. One observer made the measurements in duplicate and was blinded to the two groups. The superior-capsular measurements (linear distance and cross-sectional area) under the supraspinatus tendon, and the rotator interval were determined on MR arthrography and evaluated for each of the two groups. Results: For the superior-capsular measurements, the linear distance under the supraspinatus tendon was significantly longer in patients with atraumatic posteroinferior multidirectional shoulder instability than in control subjects ( P<0.001). The cross-sectional area under the supraspinatus tendon, and the rotator interval were significantly increased in patients with atraumatic posteroinferior multidirectional shoulder instability compared to control subjects ( P<0.001 and P=0.01, respectively). Linear distance greater than 1.6 mm under the supraspinatus tendon had a specificity of 95% and a sensitivity of 90% for diagnosing atraumatic posteroinferior multidirectional shoulder instability. Cross-sectional area under the supraspinatus tendon greater than 0.3 cm2, or an area under the rotator interval greater than 1.4 cm2 had a specificity of more than 80% and a sensitivity of 90%. Conclusion: The superior-capsular elongation as well as its diagnostic criteria of measurements by MR arthrography revealed in the present study could serve as references for diagnosing atraumatic posteroinferior shoulder instability and offer insight into the spectrum of imaging findings corresponding to the pathologies encountered at clinical presentation.


2019 ◽  
Vol 47 (6) ◽  
pp. 1361-1369 ◽  
Author(s):  
Martha M. Murray ◽  
Ata M. Kiapour ◽  
Leslie A. Kalish ◽  
Kirsten Ecklund ◽  
Christina Freiberger ◽  
...  

Background: Primary repair of the anterior cruciate ligament (ACL) augmented with a tissue engineered scaffold to facilitate ligament healing is a technique under development for patients with ACL injuries. The size (the amount of tissue) and signal intensity (the quality of tissue) of the healing ligament as visualized on magnetic resonance imaging (MRI) have been shown to be related to its strength in large animal models. Hypothesis: Both modifiable and nonmodifiable risk factors could influence the size and signal intensity of the repaired ligament in patients at 6 months after surgery. Study Design: Case series; Level of evidence, 4. Methods: 62 patients (mean age, 19.4 years; range, 14-35 years) underwent MRI of the knee 6 months after ACL repair augmented with an extracellular matrix scaffold. The signal intensity (normalized to cortical bone) and average cross-sectional area of the healing ligament were measured from the MRI stack obtained by use of a gradient echo sequence. Associations between these 2 measures and patient characteristics, which included demographic, clinical, and anatomic features, were determined by use of multivariable regression analysis. Results: A larger cross-sectional area of the repaired ligament at 6 months was associated with male sex, older age, and the performance of a larger notchplasty ( P < .05 for all associations). A lower signal intensity at 6 months, indicating greater similarity to normal ligament, was associated with a smaller tibial slope and greater side-to-side difference in quadriceps strength 3 months after surgery. Other factors, including preoperative body mass index, mechanism of injury, tibial stump length, and Marx activity score, were not significantly associated with either MRI parameter at 6 months. Conclusion: Modifiable factors, including surgical notchplasty and slower recovery of quadriceps strength at 3 months, were associated with a larger cross-sectional area and improved signal intensity of the healing ACL after bridge-enhanced ACL repair in this preliminary study. Further studies to determine the optimal size of the notchplasty and the most effective postoperative rehabilitation strategy after ACL repair augmented by a scaffold are justified. Registration: NCT02664545 (ClinicalTrials.gov identifier).


Sign in / Sign up

Export Citation Format

Share Document