Phase I and Pharmacokinetic Study of a New Taxoid, RPR 109881A, Given as a 1-Hour Intravenous Infusion in Patients With Advanced Solid Tumors

2000 ◽  
Vol 18 (17) ◽  
pp. 3164-3171 ◽  
Author(s):  
Takayasu Kurata ◽  
Yasuhiro Shimada ◽  
Tomohide Tamura ◽  
Noboru Yamamoto ◽  
Ichinosuke Hyodo ◽  
...  

PURPOSE: RPR 109881A is a new semisynthetic taxoid compound that has a similar mechanism of action to docetaxel. The purpose of this phase I study was to characterize the maximum-tolerated dose (MTD), toxicity profile, pharmacokinetic profile, and antitumor effects of this agent. PATIENTS AND METHODS: Nineteen eligible patients with advanced solid tumors were enrolled. RPR 109881A was administered as a 1-hour intravenous infusion every 3 weeks at doses ranging from 15 to 75 mg/m2. Pharmacokinetic evaluation was performed at the first cycle. RESULTS: Neutropenia (febrile neutropenia) and fatigue were dose-limiting toxicities at doses of 60 and 75 mg/m2 and seemed to be dose-related. Both thrombocytopenia and anemia were infrequent. Nonhematologic toxicities were generally mild. Pharmacokinetic studies indicated that RPR 109881A plasma disposition was bi- or triphasic, with a high total plasma clearance, a large volume of distribution, and a long terminal half-life. The area under the concentration-time curve (AUC) and the peak concentration of RPR 109881A seemed to increase with increasing dose proportionally, suggesting linear pharmacokinetics. Urinary excretion over 48 hours was low, with a mean of 0.8 ± 0.36% of the administered dose. A significant relationship existed between the percentage decrease of neutrophil counts and the AUC of RPR 109881A. Among 18 assessable patients, two partial and two minor responses were documented. CONCLUSION: RPR 109881A was found to be a well-tolerated and promising taxoid agent. The MTD was 75 mg/m2, and the recommended dose for phase II study was 60 mg/m2 as a 1-hour infusion every 3 weeks.

1998 ◽  
Vol 16 (7) ◽  
pp. 2494-2499 ◽  
Author(s):  
A M Langevin ◽  
D T Casto ◽  
P J Thomas ◽  
S D Weitman ◽  
C Kretschmar ◽  
...  

PURPOSE A phase I trial of 9-aminocamptothecin (9-AC) was performed in children with solid tumors to establish the dose-limiting toxicity (DLT), maximum-tolerated dose (MTD), and the pharmacokinetic profile in children and to document any evidence of activity. PATIENTS AND METHODS A 72-hour infusion of 9-AC dimethylacetamide formulation was administered every 21 days to 23 patients younger than 21 years of age with malignant tumors refractory to conventional therapy. Doses ranged from 36 to 62 microg/m2 per hour. Pharmacokinetics were to be performed in at least three patients per dose level. The first course was used to determine the DLT and MTD. RESULTS Nineteen patients on four dose levels were assessable for toxicities. At 62 microg/m2 per hour, three patients experienced dose-limiting neutropenia and one patient experienced dose-limiting thrombocytopenia. Pharmacokinetics were performed on 15 patients (nine patients had complete sets of plasma sampling performed). The pharmacokinetics of both lactone and total 9-AC were highly variable. The percentage of 9-AC lactone at steady-state was 10.8% +/- 3.6%. Total 9-AC and its lactone form had a terminal half-life of 8.1 +/- 3.8 and 7.1 +/- 3.9 hours, respectively, and a volume of distribution at steady-state (Vdss) of 21.2 +/- 13.3 L/m2 and 135.3 +/- 52.5 L/m2, respectively. Hepatic metabolism and biliary transport had an important role in 9-AC disposition. CONCLUSION The recommended phase II dose of 9-AC administered as a 72-hour infusion every 21 days to children with solid tumors is 52 microg/m2 per hour. Neutropenia and thrombocytopenia were dose limiting.


2020 ◽  
Vol 8 (2) ◽  
pp. e000870
Author(s):  
Aung Naing ◽  
Joseph P Eder ◽  
Sarina A Piha-Paul ◽  
Claude Gimmi ◽  
Elizabeth Hussey ◽  
...  

BackgroundM4112 is an oral, potent, and selective indoleamine 2,3-dioxygenase 1 (IDO1) and tryptophan 2,3-dioxygenase 2 (TDO2) dual inhibitor. Here, we report preclinical data and first-in-human phase I data, including safety, tolerability, pharmacokinetics, pharmacodynamics, and preliminary efficacy, of M4112 monotherapy in patients with advanced solid tumors.MethodsIn preclinical studies, M4112 was administered to mice with IDO1-expressing tumors to determine tumor IDO1 and liver TDO2 inhibition. In the phase I trial, patients received doses of M4112 two times per day in 28-day cycles until progression, toxicity, or withdrawal of consent. The primary objective was to determine the maximum tolerated dose (MTD) and recommended phase II dose (RP2D). The primary endpoint was the incidence of dose-limiting toxicities (DLTs), treatment-emergent adverse events (TEAEs), and treatment-emergent changes in safety parameters. Other endpoints included pharmacokinetics, pharmacodynamics, and antitumor effects.ResultsIn mice, M4112 significantly decreased the kynurenine:tryptophan ratio in the liver and tumor. Fifteen patients received M4112 at five distinct dose levels (three patients per cohort: 100, 200, 400, 600, and 800 mg two times per day orally). Initially, all doses inhibited IDO1 ex vivo, but plasma kynurenine levels returned to or exceeded baseline levels after day 15. Despite initial changes in kynurenine, there was no significant reduction of plasma kynurenine at steady state. There was one DLT (grade 3 allergic dermatitis; 800 mg two times per day) and one grade 2 QT prolongation (800 mg two times per day), resulting in dose reduction (not a DLT). M4112 was well tolerated, and neither the MTD nor the RP2D was established. TEAEs included fatigue, nausea, and vomiting. The best overall response was stable disease (n=9, 60%).ConclusionsThere were no serious safety concerns at any dose. Although M4112 inhibited IDO1 activity ex vivo, plasma kynurenine levels were not reduced despite achieving target exposure.Trial registration numberNCT03306420.


2019 ◽  
Vol 37 (15_suppl) ◽  
pp. 2609-2609 ◽  
Author(s):  
Toshio Shimizu ◽  
Takako Eguchi Nakajima ◽  
Ni Lu ◽  
Shilin Xue ◽  
Wenlian Xu ◽  
...  

2609 Background: KN035 is a novel fusion protein of humanized anti-PD-L1 single domain antibody and human IgG1 Fc, formulated for subcutaneous (SC) injection. A phase I safety and pharmacokinetic (PK) study was conducted in Japanese patients. Methods: Patients with advanced solid tumors were treated with KN035 SC once every-7-days (QW) or once every-14-days (Q2W) schedules with the dose limiting toxicities (DLT) evaluation period of 28 days. For the QW schedule, the starting dose was 1 mg/kg (n=3) with escalations to 2.5 (n=4), and 5 (n=3) mg/kg. For the Q2W schedule, 6 patients were planned at the dose levels of 2.5 and 5 mg/kg. Results: No DLT was observed up to the highest dose level of 5 mg/kg QW. No maximum tolerated dose (MTD) was reached. Among evaluable treated subjects (n=14), there were two confirmed partial responses. Preliminary PK analysis suggested that after SC administration, KN035 was slowly absorbed (Tmax ∼ 4 d) and the mean residual time (MRT) was 21 days. Apparent clearance (CL/F) and volume of distribution (Vz/F) were on average 0.58 L/day and 11 L, respectively. Plasma levels generally decreased mono-exponentially with an average terminal elimination half time around 13 days after reaching the peak concentration post SC administration. Exposures of KN035 increased approximately proportionally with dose. Trough concentrations were maintained above 15 µg/mL post administration of 5 mg/kg Q2W. No apparent exposure-body weight relationship was observed. Conclusions: KN035 exhibits a favorable safety profile in patients with advanced malignancies and preliminary results demonstrate encouraging anti-tumor activity. Based on PK data from the Q2W schedule, a fixed dose with less frequent dosing schedule of every 3 or 4 weeks is presently being evaluated. Clinical trial information: NCT03248843.


1999 ◽  
Vol 17 (2) ◽  
pp. 685-685 ◽  
Author(s):  
Ronald L. Drengler ◽  
John G. Kuhn ◽  
Larry J. Schaaf ◽  
Gladys I. Rodriguez ◽  
Miguel A. Villalona-Calero ◽  
...  

PURPOSE: We conducted a phase I dose-escalation trial of orally administered irinotecan (CPT-11) to characterize the maximum-tolerated dose (MTD), dose-limiting toxicities (DLTs), pharmacokinetic profile, and antitumor effects in patients with refractory malignancies. PATIENTS AND METHODS: CPT-11 solution for intravenous (IV) use was mixed with CranGrape juice (Ocean Spray, Lakeville-Middleboro, MA) and administered orally once per day for 5 days every 3 weeks to 28 patients. Starting dosages ranged from 20 to 100 mg/m2/d. RESULTS: Grade 4 delayed diarrhea was the DLT at the 80 mg/m2/d dosage in patients younger than 65 years of age and at the 66 mg/m2/d dosage in patients 65 or older. The other most clinically significant toxicity of oral CPT-11 was neutropenia. A linear relationship was found between dose, peak plasma concentration, and area under the concentration-time curve (AUC) for both CPT-11 and SN-38 lactone, implying no saturation in the conversion of irinotecan to SN-38. The mean metabolic ratio ([AUCSN-38 total + AUCSN-38G total]/AUCCPT-11 total) was 0.7 to 0.8, which suggests that oral dosing results in presystemic conversion of CPT-11 to SN-38. An average of 72% of SN-38 was maintained in the lactone form during the first 24 hours after drug administration. One patient with previously treated colorectal cancer and liver metastases who received oral CPT-11 at the 80 mg/m2/d dosage achieved a confirmed partial response. CONCLUSION: The MTD and recommended phase II dosage for oral CPT-11 is 66 mg/m2/d in patients younger than 65 years of age and 50 mg/m2/d in patients 65 or older, administered daily for 5 days every 3 weeks. The DLT of diarrhea is similar to that observed with IV administration of CPT-11. The biologic activity and favorable pharmacokinetic characteristics make oral administration of CPT-11 an attractive option for further clinical development.


2021 ◽  
Vol 13 ◽  
pp. 175883592110205
Author(s):  
Rujiao Liu ◽  
Wenhua Li ◽  
Yanchun Meng ◽  
Shuiping Gao ◽  
Jian Zhang ◽  
...  

Background: Pucotenlimab is a humanized immunoglobulin G4 (IgG4) anti programmed cell death protein 1 (anti-PD-1) monoclonal antibody (mAb) with a S228P hinge mutation and an engineered Fc domain. Preclinical data suggests that pucotenlimab exerts antitumor effects. In this phase I study, which was prospectively registered on www.chinadrugtrials.org.cn (CTR20180125), the safety, maximum tolerated dose, preliminary antitumor activity, pharmacokinetics, and immunogenicity of pucotenlimab were evaluated in patients with advanced solid tumors. Methods: Patients with advanced solid tumors refractory to standard therapies were recruited. In a 3+3 dose escalation study, 13 patients received pucotenlimab intravenously every 3 weeks (Q3W) until disease progression or unacceptable toxicity occurred at doses of 1 mg/kg, 3 mg/kg, 10 mg/kg, and 200 mg. 17 additional patients were assigned in the expansion period. Results: A total of 30 patients were enrolled. No dose-limiting toxicity was observed. The maximum tolerated dose was not reached. The most common treatment-related adverse events of any grade were proteinuria (40%), fatigue (36.7%), weight loss (26.7%), fever (26.7%), increased aspartate aminotransferase (26.7%), rash (23.3%), and anorexia (20.0%). Partial responses occurred in five patients, with an objective response rate of 16.7%. Pharmacokinetics analysis showed rapid absorption followed by slow terminal elimination, with a mean half-life of 17.1–23.5 days across all dose groups. Conclusions: Pucotenlimab had an acceptable toxicity profile at doses up to 10 mg/kg and the maximum tolerated dose was not reached. Based on the pharmacokinetics, efficacy, and safety profile, 3 mg/kg Q3W or 200 mg Q3W are optimal for further drug development.


2021 ◽  
Vol 39 (15_suppl) ◽  
pp. 3101-3101
Author(s):  
Ying Cheng ◽  
Ying Liu ◽  
Jinhua Xu ◽  
Jing Zhu ◽  
Ying Wang ◽  
...  

3101 Background: IDO is an enzyme of interest in immuno-oncology because of the immunosuppressive effects that result from its role in tryptophan catabolism. Clinical trials of IDO inhibitors with immunotherapy are under active investigation. The addition of angiogenesis inhibitor may further enhance the anti-tumor immune responses. Here we report the safety and efficacy results of SHR9146 (IDO inhibitor) plus camrelizumab (PD-1 antibody) with/without apatinib (VEGFR-2 inhibitor) in patients (pts) with advanced solid cancers who failed standard antitumor therapies. Methods: This was an open-label, phase I study. Eligible puts would receive SHR9146 (escalated dose) plus camrelizumab (200 mg IV, q2w) alone (Cohort A) or in combination with apatinib (250 mg p.o. qd) (Cohort B). Each cohort was conducted according to a 3+3 dose escalation design. The starting dose of SHR9146 was 100mg bid, followed by 200, 400, 600 mg bid. The two primary endpoints were Dose-limiting Toxicity (DLT) and Maximum Tolerated Dose (MDT). The secondary objective was to analysis the incidence of Adverse Events (AEs) and efficacy. Results: As of Oct 31, 2020, 23 pts have been enrolled (Cohort A:14, Cohort B: 9; median age: 54 years; median prior therapies: 2 lines;). Cohort A was escalating at 600mg, and Cohort B was escalating at 400mg. Two pts experienced DLTs: one DLT (G4 hypercalcemia) was observed at 600mg in Cohort A; the other DLT (G3 rash) was observed at 400mg in Cohort B. MDT was not reached and the study was still ongoing. In Cohort A, ORR and DCR in evaluable pts were 21.4% (3/14, all confirmed) and 42.9% (6/14). Partial response was observed in 3 pts with liver cancer (1/3), renal cancer (1/3), and cervix cancer (1/3). In Cohort B, ORR and DCR in evaluable pts were 33.3%(3/9, all confirmed) and 77.8%(7/9). Partial response was observed in 3 pts with SCLC (1/3), prostate cancer (1/3) and renal cancer (1/3). The incidence of pts with TRAEs and grade>=3 TRAEs were 91.3% (21/23) and 39.1% (9/23) respectively. The most common grade>=3 TRAEs were hypercalcemia (26.1%, 6/23), fatigue (17.4%, 4/23) and nausea (13.0%, 3/23). No fatal AEs were observed. G3 nausea, G3 lipase increased and G2 GGT increased resulted in SHR9146 dose reduction in 3 pts (Cohort A). Conclusions: SHR9146 plus camrelizumab in combination with/without apatinib demonstrated promising anti-tumor activity with acceptable safety in pts with advanced solid tumors. Further study is needed to validate the efficacy and safety. Clinical trial information: NCT03491631.


2000 ◽  
Vol 18 (20) ◽  
pp. 3545-3552 ◽  
Author(s):  
Corinne Couteau ◽  
Marie-Laure Risse ◽  
Michel Ducreux ◽  
Florence Lefresne-Soulas ◽  
Alessandro Riva ◽  
...  

PURPOSE: We conducted a phase I and pharmacokinetic study of docetaxel in combination with irinotecan to determine the dose-limiting toxicity (DLT), the maximum-tolerated dose (MTD), and the dose at which at least 50% of the patients experienced a DLT during the first cycle, and to evaluate the safety and pharmacokinetic profiles in patients with advanced solid tumors. PATIENTS AND METHODS: Patients with only one prior chemotherapy treatment (without taxanes or topoisomerase I inhibitors) for advanced disease were included in the study. Docetaxel was administered as a 1-hour IV infusion after premedication with corticosteroids followed immediately by irinotecan as a 90-minute IV infusion, every 3 weeks. No hematologic growth factors were allowed. RESULTS: Forty patients were entered through the following seven dose levels (docetaxel/irinotecan): 40/140 mg/m2, 50/175 mg/m2, 60/210 mg/m2, 60/250 mg/m2, 60/275 mg/m2, 60/300 mg/m2, and 70/250 mg/m2. Two hundred cycles were administered. Two MTDs were determined, 70/250 mg/m2 and 60/300 mg/m2; the DLTs were febrile neutropenia and diarrhea. Neutropenia was the main hematologic toxicity, with 85% of patients experiencing grade 4 neutropenia. Grade 3/4 nonhematologic toxicities in patients included late diarrhea (7.5%), asthenia (15.0%), febrile neutropenia (22.5%), infection (7.5%), and nausea (5.0%). Pharmacokinetics of both docetaxel and irinotecan were not modified with the administration schedule of this study. CONCLUSION: The recommended dose of docetaxel in combination with irinotecan is 60/275 mg/m2, respectively. At this dose level, the safety profile is manageable. The activity of this combination should be evaluated in phase II studies in different tumor types.


1998 ◽  
Vol 16 (8) ◽  
pp. 2770-2779 ◽  
Author(s):  
M A Villalona-Calero ◽  
S D Baker ◽  
L Hammond ◽  
C Aylesworth ◽  
S G Eckhardt ◽  
...  

PURPOSE To determine the maximum-tolerated dose (MTD), dose-limiting toxicities (DLTs), and pharmacokinetic profile of the dolastatin 15 analog LU103793 when administered daily for 5 days every 3 weeks. PATIENTS AND METHODS Fifty-six courses of LU103793 at doses of 0.5 to 3.0 mg/m2 were administered to 26 patients with advanced solid malignancies. Pharmacokinetic studies were performed on days 1 and 5 of course one. Pharmacokinetic variables were related to the principal toxicities. RESULTS Neutropenia, peripheral edema, and liver function test abnormalities were dose-limiting at doses greater than 2.5 mg/m2 per day. Four of six patients developed DLT at 3.0 mg/m2 per day, whereas two of 12 patients treated at 2.5 mg/m2 per day developed DLT. Pharmacokinetic parameters were independent of dose and similar on days 1 and 5. Volume of distribution at steady-state (Vss) was 7.6 +/- 2.0 L/m2, clearance 0.49 +/- 0.18 L/h/m2, and elimination half-life (t1/2) 12.3 +/- 3.8 hours. Peak concentrations (Cmax) on day 1 related to mean percentage decrement in neutrophils (sigmoid maximum effect (Emax) model). Patients who experienced dose-limiting neutropenia had significantly higher Cmax values than patients who did not, whereas nonhematologic DLTs were more related to dose. CONCLUSION The recommended dose for phase II evaluations of LU103793 daily for 5 days every 3 weeks is 2.5 mg/m2 per day. The lack of prohibitive cardiovascular effects and the generally acceptable toxicity profile support the rationale for performing disease-directed evaluations of LU103793 on the schedule evaluated in this study.


2000 ◽  
Vol 18 (19) ◽  
pp. 3423-3434 ◽  
Author(s):  
J. Nemunaitis ◽  
R. Eager ◽  
T. Twaddell ◽  
A. Corey ◽  
K. Sekar ◽  
...  

PURPOSE: To determine the toxicities, dose-limiting toxicities (DLT), maximum-tolerated dose, and pharmacokinetic profile of emitefur (BOF-A2) in patients with advanced solid tumors. METHODS: This was a phase I dose-escalating trial in which cohorts of patients received BOF-A2 (cohort 1, 300 mg/m2 orally [PO] tid; cohort 2, 200 mg/m2 PO tid; cohort 3, 200 mg/m2 bid; and cohort 4, 250 mg/m2 bid) for 14 consecutive days followed by 1 week of rest (cycle 1). Pharmacokinetics, toxicity, and tumor response were monitored. RESULTS: Nineteen patients received 110 cycles (three patients in cohort 1, three patients in cohort 2, 10 patients in cohort 3, and three patients in cohort 4). DLT (grade 3 stomatitis, diarrhea, leukopenia) was observed in cohorts 1, 2, and 4. Pharmacokinetics indicated that prolonged systemic expression of fluorouracil (5-FU) is maintained after administration of BOF-A2 at a dose of 200 mg bid for 14 days. The mean steady-state concentration of plasma 5-FU was ≥ 24 ng/mL, which was 184-fold greater than the minimum effective cytotoxic concentration in vitro. Lack of variation of 5-FU trough levels within a day at steady-state indicates suppression of circadian variation. One patient in cohort 3 achieved a partial response and five patients maintained stable disease in excess of 6 months. CONCLUSION: BOF-A2 at a dose of 200 mg PO bid for 14 days followed by 7 days of rest is well tolerated. Prolonged exposure to 5-FU above the predicted preclinical minimum effective concentration is maintained, without evidence of circadian variation. Furthermore, evidence of antitumor activity is suggested.


Sign in / Sign up

Export Citation Format

Share Document