A Case Study on Local Area Network Change Controls

EDPACS ◽  
2000 ◽  
Vol 27 (8) ◽  
pp. 1-5
Author(s):  
Bob Ashton
2017 ◽  
Vol 6 (2) ◽  
pp. 20-32
Author(s):  
MengMeng Zhao

This article outlines a case study in which the author employs a Raspberry Pi 3 miniature computer as a Digital Signage System, which can be managed from either laptop, smartphone or desktop computers. The author presents it as a case study that high school students (and their teachers) can follow, as a collaborative project that delivers a cost effective and flexible, digital signage system for their school. While it does not require any coding on their part, it presents an excellent use of ICT, by configuring multiple interrelated hardware and open software, in a school community setting, that would fit in with many contemporary digital technology curriculums.


Author(s):  
Stian Skjong ◽  
Eilif Pedersen

In this work, a co-simulation case study of a marine offshore surface vessel in Dynamic Positioning (DP) operation, where the DP-controller is placed on an Arduino® micro-controller, is presented. The reasons for using co-simulation are that it is possible to distribute the model among different cores in one computer as well as among different computing members over a local area network. Also, it is possible to export submodels from different software and connect them together in a common simulation. This enables the use of suited modeling software for different types of dynamical systems, as well as hardware, such as micro-controllers for Hardware-In-the-Loop testing. Such an integrated and open simulation method facilitates the development of new products as well as shortening the iterative process in design phases. As for co-simulation standard, the Functional Mock-up Interface (FMI) for co-simulation will be used in this work, and a communication Functional Mock-up Unit (FMU) that communicates with hardware and handles the signal flow between the hardware and the co-simulation will be developed. In the case study, a DP-controller is implemented on the microcontroller and connected to a filter, a position reference system and an offshore vessel model, all implemented as FMUs in the total co-simulation. For simulation master algorithm, the open source software “Coral”, that was developed in the knowledge building project “Virtual Prototyping of Maritime Systems and Operations” (ViProMa), will be used. The simulation results show that even though the micro-controller is set to communicate with a lower frequency than the rest of the co-simulation submodels, the total c-simulation is stable and produces good results. It also show that the FMI standard facilitates hardware in the loop in the co-simulation, and that the co-simulation master algorithm Coral is suited for such simulation cases.


1981 ◽  
Vol 1 (1) ◽  
pp. 21 ◽  
Author(s):  
David Hutchison ◽  
Doug Shepherd

1991 ◽  
Vol 30 (01) ◽  
pp. 53-64 ◽  
Author(s):  
R. Schosser ◽  
C. Weiss ◽  
K. Messmer

This report focusses on the planning and realization of an interdisciplinary local area network (LAN) for medical research at the University of Heidelberg. After a detailed requirements analysis, several networks were evaluated by means of a test installation, and a cost-performance analysis was carried out. At present, the LAN connects 45 (IBM-compatible) PCs, several heterogeneous mainframes (IBM, DEC and Siemens) and provides access to the public X.25 network and to wide-area networks for research (EARN, BITNET). The network supports application software that is frequently needed in medical research (word processing, statistics, graphics, literature databases and services, etc.). Compliance with existing “official” (e.g., IEEE 802.3) and “de facto” standards (e.g., PostScript) was considered to be extremely important for the selection of both hardware and software. Customized programs were developed to improve access control, user interface and on-line help. Wide acceptance of the LAN was achieved through extensive education and maintenance facilities, e.g., teaching courses, customized manuals and a hotline service. Since requirements of clinical routine differ substantially from medical research needs, two separate networks (with a gateway in between) are proposed as a solution to optimally satisfy the users’ demands.


Author(s):  
Chaithra. H. U ◽  
Vani H.R

Now a days in Wireless Local Area Networks (WLANs) used in different fields because its well-suited simulator and higher flexibility. The concept of WLAN  with  advanced 5th Generation technologies, related to a Internet-of-Thing (IOT). In this project, representing the Network Simulator (NS-2) used linked-level simulators for Wireless Local Area Networks and still utilized IEEE 802.11g/n/ac with advanced IEEE 802.11ah/af technology. Realization of the whole Wireless Local Area Networking linked-level simulators inspired by the recognized Vienna Long Term Evolution- simulators. As a outcome, this is achieved to link together that simulator to detailed performances of Wireless Local Area Networking with Long Term Evolution, operated in the similar RF bands. From the advanced 5th Generation support cellular networking, such explore is main because different coexistences scenario can arise linking wireless communicating system to the ISM and UHF bands.


Sign in / Sign up

Export Citation Format

Share Document