scholarly journals Dynamics of Forest Floor and Soil Organic Matter Accumulation in Boreal, Temperate, and Tropical Forests

2018 ◽  
pp. 150-151
Author(s):  
Kristiina A. Vogt ◽  
Daniel J. Vogt ◽  
Sandra Brown ◽  
Joel P. Tilley ◽  
Robert L. Edmonds ◽  
...  
1995 ◽  
Vol 73 (S1) ◽  
pp. 1391-1398 ◽  
Author(s):  
D. Jean Lodge ◽  
Sharon Cantrell

Understanding variation in tropical forest fungal populations and communities is important for assessing fungal biodiversity, as well as for understanding the regulatory roles fungi play in tropical forests. In wet tropical forests, the canopy is typically occupied by certain wood decomposers, endophytes, epiphylls, and pathogens. Aphyllophoraceous canopy fungi are a subset of species found in the understory. Marasmioid agarics in the understory often form extensive networks of rhizomorphs that trap litter; these and other aerial species are rare on the forest floor. Decomposers are stratified within the forest floor, with some species colonizing only fresh litter, others preferring decomposed litter, and others restricted to soil organic matter. Specificity to particular host substrates is frequent among tropical forest litter decomposers and contributes to spatial heterogeneity in fungal communities over the landscape. Litter basidiomycete and microfungal communities in patches of 1 m2 or less do not significantly resemble communities in similar patches located at distances greater than 100 m. Disturbances induce changes in the environment and the abundance of different substrates, resulting in changes in fungal communities through time, and variation over the landscape. Severe disturbances, as well as the slight daily variations in rainfall, profoundly affect populations of fungal decomposers and their influence on plant nutrient availability. Key words: fungi, tropical forests, diversity, stratification, spatial variation, temporal variation.


Geoderma ◽  
2021 ◽  
Vol 403 ◽  
pp. 115206
Author(s):  
Guohui Wu ◽  
Zhenhua Chen ◽  
Dongqi Jiang ◽  
Nan Jiang ◽  
Hui Jiang ◽  
...  

Radiocarbon ◽  
2006 ◽  
Vol 48 (3) ◽  
pp. 337-353 ◽  
Author(s):  
Femke H Tonneijck ◽  
Johannes van der Plicht ◽  
Boris Jansen ◽  
Jacobus M Verstraten ◽  
Henry Hooghiemstra

Volcanic ash soils (Andosols) may offer great opportunities for paleoecological studies, as suggested by their characteristic accumulation of organic matter (OM). However, understanding of the chronostratigraphy of soil organic matter (SOM) is required. Therefore, radiocarbon dating of SOM is necessary, but unfortunately not straightforward. Dating of fractions of SOM obtained by alkali-acid extraction is promising, but which fraction (humic acid or humin) renders the most accurate 14C dates is still subject to debate. To determine which fraction should be used for 14C dating of Andosols and to evaluate if the chronostratigraphy of SOM is suitable for paleoecological research, we measured 14C ages of both fractions and related calibrated ages to soil depth for Andosols in northern Ecuador. We compared the time frames covered by the Andosols with those of peat sequences nearby to provide independent evidence. Humic acid (HA) was significantly older than humin, except for the mineral soil samples just beneath a forest floor (organic horizons), where the opposite was true. In peat sections, 14C ages of HA and humin were equally accurate. In the soils, calibrated ages increased significantly with increasing depth. Age inversions and homogenization were not observed at the applied sampling distances. We conclude that in Andosols lacking a thick organic horizon, dating of HA renders the most accurate results, since humin was contaminated by roots. On the other hand, in mineral soil samples just beneath a forest floor, humin ages were more accurate because HA was then contaminated by younger HA illuviated from the organic horizons. Overall, the chronostratigraphy of SOM in the studied Andosols appears to be suitable for paleoecological research.


1979 ◽  
Vol 9 (2) ◽  
pp. 245-256 ◽  
Author(s):  
Robert Fogel ◽  
Gary Hunt

The allocation of biomass and the turnover time of various components were measured from August 1976 to August 1977 in a young, second-growth Douglas-fir stand in the Oregon Coast Range. Allocation of biomass among the tree components was 14 732 kg foliage ha−1, 30 455 kg branches ha−1, 212 941 kg boles ha−1, 49 289 kg nonmycorrhizal roots ha−1, and 15 015 kg host portion of mycorrhizae ha−1. Biomass allocation of fungal components was 10 009 kg mycorrhizal mantles ha−1, 2785 kg Cenococcumgeophilum sclerotia ha−1, 65 kg sporocarps ha−1, 369 kg litter hyphae ha−1, and 6666 kg soil hyphae ha−1. The forest floor was composed of 6970 kg fine (<2 mm) litter ha−1, 6564 kg coarse (2–25 mm) litter ha−1, and 5500 kg log (>25 mm) litter ha−1. Soil organic matter (<0.494 mm) was 87 600 kg ha−1. Total annual stand throughput was 30 324 kg ha−1, excluding soil organic matter throughput. Of this total, 50.5% was accounted for by fungal throughput, 39.5% by tree throughput, and 10.0% by forest floor throughput.


2016 ◽  
Vol 23 (2) ◽  
pp. 933-944 ◽  
Author(s):  
Donald R. Zak ◽  
Zachary B. Freedman ◽  
Rima A. Upchurch ◽  
Markus Steffens ◽  
Ingrid Kögel-Knabner

Sign in / Sign up

Export Citation Format

Share Document