A fundamental study on dynamic response of tunnel reinforcement structure for high speed railway

Author(s):  
T. Kameda ◽  
T. Nishioka
2017 ◽  
Vol 2017 ◽  
pp. 1-13 ◽  
Author(s):  
Xiaohui Zhang ◽  
Yao Shan ◽  
Xinwen Yang

A model based on the theory of train-track-bridge coupling dynamics is built in the article to investigate how high-speed railway bridge pier differential settlement can affect various railway performance-related criteria. The performance of the model compares favorably with that of a 3D finite element model and train-track-bridge numerical model. The analysis of the study demonstrates that all the dynamic response for a span of 24 m is slightly larger than that for a span of 32 m. The wheel unloading rate increases with pier differential settlement for all of the calculation conditions considered, and its maximum value of 0.695 is well below the allowable limit. Meanwhile, the vertical acceleration increases with pier differential settlement and train speed, respectively, and the values for a pier differential settlement of 10 mm and speed of 350 km/h exceed the maximum allowable limit stipulated in the Chinese standards. On this basis, a speed limit for the exceeding pier differential settlement is determined for comfort consideration. Fasteners that had an initial tensile force due to pier differential settlement experience both compressive and tensile forces as the train passes through and are likely to have a lower service life than those which solely experience compressive forces.


2017 ◽  
Vol 20 (11) ◽  
pp. 1623-1631 ◽  
Author(s):  
Patrick Salcher ◽  
Christoph Adam

The objective of this study is to provide the engineering practice with a tool for simplified dynamic response assessment of high-speed railway bridges in the pre-design phase. To serve this purpose, a non-dimensional representation of the characteristic parameters of the train–bridge interaction problem is described and extended based on a beam bridge model subjected to the static axle loads of the crossing high-speed train. The non-dimensional parameter representation is used to discuss several code-related design issues. It is revealed that in an admitted parameter domain, a code-regulated static assessment of high-speed railway bridges may under-predict the actual dynamic response. Furthermore, the minimum mass of a bridge as a function of the characteristic parameters is presented to comply with the maximum bridge acceleration specified in standards.


IEEE Access ◽  
2021 ◽  
Vol 9 ◽  
pp. 129188-129206
Author(s):  
Li Xin ◽  
Bai Mingzhou ◽  
Wei Zijun ◽  
Li Pengxiang ◽  
Shi Hai ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document