On the Asymptotic Expansion of the Solution of a Dirichlet-Ventcel Problem with a Small Parameter

Author(s):  
M Bourlard ◽  
A Maghnouji ◽  
S Nicaise ◽  
L Paquet
Author(s):  
A.M. Svalov ◽  

The influence of small-size inclusion of pipes in a well column on the natural frequency of its longitudinal vibrations is investigated. Using the asymptotic expansion in a small parameter, an analytical relation is obtained that describes the change in the period of the column oscillations in the form of some additional small term to the period of the homogeneous column oscillations. Numerical calculations show that the obtained analytical relations almost accurately describe the oscillation period of a column with a massive compact inclusion, while its difference from the oscillation period of a homogeneous column is within ~20%. The results obtained can be useful for preventing resonant phenomena in the drill string when drilling wells, as well as for optimal use of the longitudinal vibrations of the tubing string to influence the bottom-hole zones of producing wells.


2018 ◽  
Vol 2018 ◽  
pp. 1-18
Author(s):  
Nguyen Huu Nhan ◽  
Le Thi Phuong Ngoc ◽  
Nguyen Thanh Long

We consider the Robin-Dirichlet problem for a nonlinear wave equation of Kirchhoff-Carrier type. Using the Faedo-Galerkin method and the linearization method for nonlinear terms, the existence and uniqueness of a weak solution are proved. An asymptotic expansion of high order in a small parameter of a weak solution is also discussed.


Author(s):  
Carlos Martel ◽  
Roque Corral ◽  
Jose´ Miguel Llorens

A new simple asymptotic mistuning model (AMM), which constitutes an extension of the well known Fundamental Mistuning Model for groups of modes belonging to a modal family exhibiting a large variation of the tuned vibration characteristics, is used to analyze the effect of mistuning on the stability properties of aerodynamically unstable rotors. The model assumes that both, the aerodynamics and the structural dynamics of the assembly are linear, and retains the first order terms of a fully consistent asymptotic expansion of the tuned system where the small parameter is the blade mistuning. The simplicity of the model allows the optimization of the blade mistuning pattern to achieve maximum rotor stability. The results of the application of this technique to realistic welded-in-pair and interlock low-pressure-turbine rotors are also presented.


1995 ◽  
Vol 05 (07) ◽  
pp. 867-885 ◽  
Author(s):  
JANUSZ R. MIKA ◽  
JACEK BANASIAK

For a simple model of a linear kinetic equation the exact solution is expanded in terms of a small parameter whose presence makes the equation, singularly perturbed. Various asymptotic expansion methods are analyzed and it is shown that the compressed method, which is related to the Chapman-Enskog asymptotic procedure, is the most accurate. This holds when the technique of time rescaling is applied to overcome the difficulties with the application of the standard asymptotic procedure.


2004 ◽  
Vol 14 (05) ◽  
pp. 735-758 ◽  
Author(s):  
D. DUPUY ◽  
G. P. PANASENKO ◽  
R. STAVRE

The steady motion of a micropolar fluid through a wavy tube with the dimensions depending on a small parameter is studied. An asymptotic expansion is proposed and error estimates are proved by using a boundary layer method. We apply the method of partial asymptotic decomposition of domain and we prove that the solution of the partially decomposed problem represents a good approximation for the solution of the considered problem.


2020 ◽  
Vol 23 (03) ◽  
pp. 2050018
Author(s):  
OLESYA GRISHCHENKO ◽  
XIAO HAN ◽  
VICTOR NISTOR

We propose a new type of asymptotic expansion for the transition probability density function (or heat kernel) of certain parabolic partial differential equations (PDEs) that appear in option pricing. As other, related methods developed by Costanzino, Hagan, Gatheral, Lesniewski, Pascucci, and their collaborators, among others, our method is based on the computation of the truncated asymptotic expansion of the heat kernel with respect to a “small” parameter. What sets our method apart is that our small parameter is possibly different from the time to expiry and that the resulting commutator calculations go beyond the nilpotent Lie algebra case. In favorable situations, the terms of this asymptotic expansion can quickly be computed explicitly leading to a “closed-form” approximation of the solution, and hence of the option price. Our approximations tend to have much fewer terms than the ones obtained from short time asymptotics, and are thus easier to generalize. Another advantage is that the first term of our expansion corresponds to the classical Black-Scholes model. Our method also provides equally fast approximations of the derivatives of the solution, which is usually a challenge. A full theoretical justification of our method seems very difficult at this time, but we do provide some justification based on the results of (Siyan, Mazzucato, and Nistor, NWEJ 2018). We therefore mostly content ourselves to demonstrate numerically the efficiency of our method by applying it to the solution of the mean-reverting SABR stochastic volatility model PDE, commonly referred to as the [Formula: see text]SABR PDE, by taking the volatility of the volatility parameter [Formula: see text] (vol-of-vol) as a small parameter. For this PDE, we provide extensive numerical tests to gauge the performance of our method. In particular, we compare our approximation to the one obtained using Hagan’s formula and to the one obtained using a new, adaptive finite difference method. We provide an explicit asymptotic expansion for the implied volatility (generalizing Hagan’s formula), which is what is typically needed in concrete applications. We also calibrate our model to observed market option price data. The resulting values for the parameters [Formula: see text], [Formula: see text], and [Formula: see text] are realistic, which provides more evidence for the conjecture that the volatility is mean-reverting.


1998 ◽  
Vol 5 (6) ◽  
pp. 501-512
Author(s):  
A. Gagnidze

Abstract The heat equation with a small parameter, is considered, where ε ∈ (0, 1), 𝑚 < 1 and χ is a finite function. A complete asymptotic expansion of the solution in powers ε is constructed.


Author(s):  
Wei-Dong Song ◽  
Jian-Guo Ning ◽  
Jing Wang ◽  
Jian-Qiao Li

AbstractBasic assumptions are introduced into a homogenization theory which is described in the form of elliptic differential equations with a small parameter. Homogenization operators are used to solve the equations by asymptotic expansion methods, and error estimates of homogenization solutions are given.


Sign in / Sign up

Export Citation Format

Share Document