Arsenic contamination of the Salamanca aquifer system in Mexico

2005 ◽  
pp. 77-83 ◽  
Author(s):  
R Rodriguez ◽  
M Armienta ◽  
J Mejia Gómez
2014 ◽  
Vol 9 (No. 2) ◽  
pp. 66-76
Author(s):  
H.-Y. Lu

Arsenic contamination in groundwater is a common groundwater problem worldwide. To manage groundwater resources effectively, it is crucial to determine the arsenic source. Taiwan’s Tsengwen Creek watershed is one of the known areas for groundwater arsenic contamination. Water-rock interactions are evaluated on a regional scale. A conceptual hydrogeological framework is first established based on groundwater hydrochemistry. The local aquifer system can be categorized into high-arsenic deep aquifer and low-arsenic shallow aquifer. The average geochemistry of sediments indicates that arsenic and heavy metals are not significantly enriched in the deeper aquifer on the scale of the whole watershed. Therefore, arsenic contamination in the deeper groundwater of the Tsengwen Creek watershed is not simply source-controlled. However, the Fe-Mn oxides in sediments contain slightly more arsenic in the deep aquifer. The long residence time of groundwater could magnify the enrichment and cause natural arsenic contamination in the deep aquifer.


2016 ◽  
Vol 39 ◽  
pp. 134-137 ◽  
Author(s):  
Giovanni Vespasiano ◽  
Carmine Apollaro ◽  
Luigi Marini ◽  
Rocco Dominici ◽  
Giuseppe Cianflone ◽  
...  

2018 ◽  
Vol 7 (4) ◽  
pp. 191
Author(s):  
Sherwan Sh. Qurtas

Recharge estimation accurately is crucial to proper groundwater resource management, for the groundwater is dynamic and replenished natural resource. Usually recharge estimation depends on the; the water balance, water levels, and precipitation. This paper is studying the south-middle part of Erbil basin, with the majority of Quaternary sediments, the unconfined aquifer system is dominant, and the unsaturated zone is ranging from 15 to 50 meters, which groundwater levels response is moderate. The purpose of this study is quantification the natural recharge from precipitation. The water table fluctuation method is applied; using groundwater levels data of selected monitoring wells, neighboring meteorological station of the wells, and the specific yield of the aquifers. This method is widely used for its simplicity, scientific, realistic, and direct measurement. The accuracy depends on the how much the determination of specific yield is accurate, accuracy of the data, and the extrapolations of recession of groundwater levels curves of no rain periods. The normal annual precipitation there is 420 mm, the average recharge is 89 mm, and the average specific yield is around 0.03. The data of one water year of 2009 and 2010 has taken for some technical and accuracy reasons.


Sign in / Sign up

Export Citation Format

Share Document