regional aquifer
Recently Published Documents


TOTAL DOCUMENTS

209
(FIVE YEARS 17)

H-INDEX

15
(FIVE YEARS 2)

Geosciences ◽  
2021 ◽  
Vol 11 (10) ◽  
pp. 415
Author(s):  
Yan Lévesque ◽  
Julien Walter ◽  
Romain Chesnaux

Geological contexts that lack minimal stratigraphic and piezometric information can be challenging to produce an initial hydrogeological map in remote territories. This study proposes an approach to characterize a regional aquifer using transient electromagnetic (TEM) surveys. Given the presence of randomly dispersed boreholes, the Saint-Narcisse moraine in the Mauricie region of Quebec (Canada) is an appropriate site for collecting the required geophysical data, correlating the stratigraphic and piezometric information, and characterizing regional granular aquifers in terms of stratigraphy, geometry, thickness, and extent. In order to use all TEM results (i.e., 47 stations) acquired in the moraine area, we also correlated 13 TEM stations, 7 boreholes, and 6 stratigraphic cross-sections to derive an empirical and local petrophysical relationship and to establish a calibration chart of the sediments. Our TEM data, combined with piezometric mapping and the sedimentary records from boreholes and stratigraphic cross-sections, revealed the compartmentalization of a multi-kilometer morainic system and indicated the presence of two large unconfined granular aquifers overlying the bedrock. These aquifers extend more than 12 km east to west across the study area and are between 25 and >94 m thick. The TEM method provides critical information on groundwater at a regional scale by acquiring information from multiple stations within a short time span to a degree not possible with other existing methodologies.


Water ◽  
2021 ◽  
Vol 13 (17) ◽  
pp. 2405
Author(s):  
Damien Jacob ◽  
Philippe Ackerer ◽  
Husam Musa Baalousha ◽  
Frederick Delay

Qatar’s water resource has been largely overexploited, leading to the severe depletion of its aquifers and degradation of water quality due to saline intrusions. Qatar envisions employing regional aquifers to store water via forced injection of desalinated water and thus increase available from a few days to two months. A strategy for the implementation of forced injections is proposed based on a spatially distributed model of groundwater flow at the scale of the whole country. The model is based on calibration under steady-state flow conditions and for a two-dimensional single regional aquifer due to the lack of data. Injection scenarios include various mean injection rates at the scale of the whole system and are interpreted under the assumption that the additional storage should feed 2.7 M inhabitants for two months at a rate of 100 L/person/day. When this water supply stock is reached, the model is run to define the infiltration rate, which allows the stock to remain constant over time as a result of an even balance between infiltrations, withdrawals and also leaks or inlets through the boundary conditions of the system.


2021 ◽  
Author(s):  
ReNae S Nowicki ◽  
Mark C Rains ◽  
Jason J LaRoche ◽  
Christine M Downs ◽  
Sarah E Kruse

Abstract This study investigates hydrogeologic controls on a peculiar, poorly studied type of geographically isolated wetland in west-central Florida, USA, locally referred to as “sandhill wetlands.” Their peculiarity lies in their connectivity to a large, regional aquifer, which controls their hydrology and influences their ecological expression. Six wetlands and one wetland-pond complex were examined using geophysical, lithologic, hydrologic, and ecological data. These data were used to configure site-specific hydrogeology, from which two conceptual models were developed. The first model depicts mechanisms of sandhill wetland connectivity to the regional aquifer. Three mechanisms of connectivity are proposed based on the degree and depth of aquifer confinement: 1) direct - due to wetland embedment directly in the unconfined regional aquifer; 2) indirect - due to embedment in a surficial aquifer, where groundwater exchange with the regional aquifer occurs through breaches in the semi-confining unit; and 3) none - due to embedment in a surficial aquifer where groundwater exchange with the regional aquifer does not occur because the semi-confining unit is too deep. The second model conceptualizes fundamental sandhill wetland ecohydrology. It depicts how the geomorphology of a sandhill depression relative to the range of the regional water table determine whether that feature will manifest as a wetland or as a pond, lake, sink, or upland. Findings from both models contribute to the limited understanding of sandhill wetland, pond, and lake ecohydrology and may be used to improve how they are classified, assessed, managed, and preserved as valuable natural resources.


Water ◽  
2021 ◽  
Vol 13 (8) ◽  
pp. 1111
Author(s):  
Carmen Serrano-Hidalgo ◽  
Carolina Guardiola-Albert ◽  
Javier Heredia ◽  
Francisco Javier Elorza Tenreiro ◽  
Nuria Naranjo-Fernández

In large-scale regional models, used for the management of underground resources, it is quite common to find that relationships between the regional aquifer and small wetlands are not included. These models do not consider this connection because of the small amount of water involved, but they should consider the potential for significant ecological impacts if the groundwater resources in the ecosystems associated with these wetlands are mismanaged. The main objective of this work is to investigate the possibilities offered by MODFLOW LGR-V2 to represent (at small scale) the Santa Olalla pond, located in the Doñana Natural Park (South of Spain), and its relationship with the Almonte-Marismas regional aquifer. As a secondary objective, we propose to investigate the advantages and disadvantages that DRAIN, RIVER and LAKE MODFLOW packages offer within the MODFLOW LGR-V2 discretizations. The drain boundary condition with a coarse discretization implemented through ModelMuse allows the most adequate performance of the groundwater levels in the environment of the pond. However, when using lake boundary condition, the use of the MODFLOW LGR-V2 version is particularly useful. The present work also gives some guidelines to employ these packages with the MODFLOW graphical user’s interface, ModelMuse 4.2.


2021 ◽  
Author(s):  
L. Cedric ◽  
L. Cantegrel ◽  
L. Carcione ◽  
E. Gaucher

Water ◽  
2020 ◽  
Vol 12 (12) ◽  
pp. 3307
Author(s):  
Hector A. Zamora ◽  
Christopher J. Eastoe ◽  
Benjamin T. Wilder ◽  
Jennifer C. McIntosh ◽  
Thomas Meixner ◽  
...  

Groundwater resources in the southwestern United States are finite and riparian and wetland areas are vulnerable to aquifer overdraft and unregulated groundwater use. Environmental isotopes and water chemistry were used to distinguish water types, recharge mechanisms, and residence time along several reaches of the Sonoyta River and Quitobaquito Springs located near the U.S.-Mexico border. Areas located upgradient from the Sonoyta River, such as the Puerto Blanco Mountains and La Abra Plain, are supported by local recharge which corresponds to water from the largest 30% of rain events mainly occurring during winter. For Quitobaquito Springs, the δ18O and δ2H values are too low to be derived from local recharge. Stable isotope data and Cl/SO4 mass ratios indicate that the Sonoyta River supplied Quitobaquito Springs through flow along a suggested fault system. Based on these results, Quitobaquito Springs flow could be diminished by any activity resulting in increased groundwater extraction and lowering of water elevations in the Sonoyta River regional aquifer.


2020 ◽  
pp. 389-396
Author(s):  
Michael E. Campana ◽  
William R. Sadler ◽  
Neil L. Ingraham ◽  
Roger L. Jacobson

Sign in / Sign up

Export Citation Format

Share Document