An Experimental Analysis of Community Detection Algorithms on a Temporally Evolving Dataset

2021 ◽  
pp. 23-70
Author(s):  
B.S.A.S. Rajita ◽  
Mrinalini Shukla ◽  
Deepa Kumari ◽  
Subhrakanta Panda
Algorithms ◽  
2020 ◽  
Vol 13 (6) ◽  
pp. 139 ◽  
Author(s):  
Vincenzo Cutello ◽  
Georgia Fargetta ◽  
Mario Pavone ◽  
Rocco A. Scollo

Community detection is one of the most challenging and interesting problems in many research areas. Being able to detect highly linked communities in a network can lead to many benefits, such as understanding relationships between entities or interactions between biological genes, for instance. Two different immunological algorithms have been designed for this problem, called Opt-IA and Hybrid-IA, respectively. The main difference between the two algorithms is the search strategy and related immunological operators developed: the first carries out a random search together with purely stochastic operators; the last one is instead based on a deterministic Local Search that tries to refine and improve the current solutions discovered. The robustness of Opt-IA and Hybrid-IA has been assessed on several real social networks. These same networks have also been considered for comparing both algorithms with other seven different metaheuristics and the well-known greedy optimization Louvain algorithm. The experimental analysis conducted proves that Opt-IA and Hybrid-IA are reliable optimization methods for community detection, outperforming all compared algorithms.


2021 ◽  
Vol 54 (3) ◽  
pp. 1-35
Author(s):  
Matteo Magnani ◽  
Obaida Hanteer ◽  
Roberto Interdonato ◽  
Luca Rossi ◽  
Andrea Tagarelli

A multiplex network models different modes of interaction among same-type entities. In this article, we provide a taxonomy of community detection algorithms in multiplex networks. We characterize the different algorithms based on various properties and we discuss the type of communities detected by each method. We then provide an extensive experimental evaluation of the reviewed methods to answer three main questions: to what extent the evaluated methods are able to detect ground-truth communities, to what extent different methods produce similar community structures, and to what extent the evaluated methods are scalable. One goal of this survey is to help scholars and practitioners to choose the right methods for the data and the task at hand, while also emphasizing when such choice is problematic.


2021 ◽  
pp. 1-17
Author(s):  
Mohammed Al-Andoli ◽  
Wooi Ping Cheah ◽  
Shing Chiang Tan

Detecting communities is an important multidisciplinary research discipline and is considered vital to understand the structure of complex networks. Deep autoencoders have been successfully proposed to solve the problem of community detection. However, existing models in the literature are trained based on gradient descent optimization with the backpropagation algorithm, which is known to converge to local minima and prove inefficient, especially in big data scenarios. To tackle these drawbacks, this work proposed a novel deep autoencoder with Particle Swarm Optimization (PSO) and continuation algorithms to reveal community structures in complex networks. The PSO and continuation algorithms were utilized to avoid the local minimum and premature convergence, and to reduce overall training execution time. Two objective functions were also employed in the proposed model: minimizing the cost function of the autoencoder, and maximizing the modularity function, which refers to the quality of the detected communities. This work also proposed other methods to work in the absence of continuation, and to enable premature convergence. Extensive empirical experiments on 11 publically-available real-world datasets demonstrated that the proposed method is effective and promising for deriving communities in complex networks, as well as outperforming state-of-the-art deep learning community detection algorithms.


2015 ◽  
Vol 719-720 ◽  
pp. 1198-1202
Author(s):  
Ming Yang Zhou ◽  
Zhong Qian Fu ◽  
Zhao Zhuo

Practical networks have community and hierarchical structure. These complex structures confuse the community detection algorithms and obscure the boundaries of communities. This paper proposes a delicate method which synthesizes spectral analysis and local synchronization to detect communities. Communities emerge automatically in the multi-dimension space of nontrivial eigenvectors. Its performance is compared to that of previous methods and applied to different practical networks. Our results perform better than that of other methods. Besides, it’s more robust for networks whose communities have different edge density and follow various degree distributions. This makes the algorithm a valuable tool to detect and analysis large practical networks with various community structures.


2021 ◽  
Author(s):  
Giambattista Amati ◽  
Simone Angelini ◽  
Antonio Cruciani ◽  
Gianmarco Fusco ◽  
Giancarlo Gaudino ◽  
...  

2021 ◽  
pp. 1-12
Author(s):  
JinFang Sheng ◽  
Huaiyu Zuo ◽  
Bin Wang ◽  
Qiong Li

 In a complex network system, the structure of the network is an extremely important element for the analysis of the system, and the study of community detection algorithms is key to exploring the structure of the complex network. Traditional community detection algorithms would represent the network using an adjacency matrix based on observations, which may contain redundant information or noise that interferes with the detection results. In this paper, we propose a community detection algorithm based on density clustering. In order to improve the performance of density clustering, we consider an algorithmic framework for learning the continuous representation of network nodes in a low-dimensional space. The network structure is effectively preserved through network embedding, and density clustering is applied in the embedded low-dimensional space to compute the similarity of nodes in the network, which in turn reveals the implied structure in a given network. Experiments show that the algorithm has superior performance compared to other advanced community detection algorithms for real-world networks in multiple domains as well as synthetic networks, especially when the network data chaos is high.


Sign in / Sign up

Export Citation Format

Share Document