Innovative solutions for the building industry to improve sustainability performance with Life Cycle Assessment modelling

2019 ◽  
pp. 245-253
Author(s):  
V. Mannheim ◽  
Z.S. Fehér ◽  
Z. Siménfalvi
2019 ◽  
Vol 11 (8) ◽  
pp. 2361 ◽  
Author(s):  
Cagatay Tasdemir ◽  
Rado Gazo

The primary objective of this study was to validate the sustainability benchmarking tool (SBT) framework proposed by the authors in a previous study. The SBT framework is focused on benchmarking triple bottom line (TBL) sustainability through exhaustive use of lean, six-sigma, and life cycle assessment (LCA). During the validation, sustainability performance of a value-added wood products’ production line was assessed and improved through deployment of the SBT framework. Strengths and weaknesses of the system were identified within the scope of the bronze frontier maturity level of the framework and tackled through a six-step analytical and quantitative reasoning methodology. The secondary objective of the study was to document how value-added wood products industries can take advantage of natural properties of wood to become frontiers of sustainability innovation. In the end, true sustainability performance of the target facility was improved by 2.37 base points, while economic and environmental performance was increased from being a system weakness to achieving an acceptable index score benchmark of 8.41 and system strength level of 9.31, respectively. The social sustainability score increased by 2.02 base points as a function of a better gender bias ratio. The financial performance of the system improved from a 33% loss to 46.23% profit in the post-improvement state. Reductions in CO2 emissions (55.16%), energy consumption (50.31%), solid waste generation (72.03%), non-value-added-time (89.30%), and cost performance (64.77%) were other significant achievements of the study. In the end, the SBT framework was successfully validated at the facility level, and the target facility evolved into a leaner, cleaner, and more responsible version of itself. This study empirically documents how synergies between lean, sustainability, six-sigma and life cycle assessment concepts outweigh their divergences and demonstrates the viability of the SBT framework.


2013 ◽  
Vol 724-725 ◽  
pp. 1597-1601 ◽  
Author(s):  
Ahmad Faiz Abd Rashid ◽  
Sumiani Yusoff ◽  
Noorsaidi Mahat

The introduction of life cycle assessment (LCA) to the building industry is important due to its ability to systematically quantify every environmental impact involved in every process from cradle to grave. Within the last two decades, research on LCA has increased considerably covering from manufacturing of building materials and construction processes. However, the LCA application for buildings in Asia are limited and fragmented due to different research objectives, type of buildings and locations. This paper has attempted to collect and review the application of LCA in the building industry in Asia from the selected publications over the last 12 years, from 2001 to 2012. The result shows that most LCA research basic methodology is based on International Organization of Standardization (ISO) 14040 series but with variance. It is found that the operational phase consume highest energy and concrete responsible for the highest total embodied energy and environmental impact. It also suggested that building material with low initial embodied energy does not necessarily have low life cycle energy. Overall, findings from LCA studies can help to make informed decisions in terms of environmental impact and help realizing sustainable buildings in the future.


Author(s):  
Franca Trubiano

The building industry lacks a holistic and integrated method for assessing the possible human health risks attendant to using materials that have been verified as toxic. In particular, it lacks an open-source, interactive interface for measuring the health risks associated with sourcing, manufacturing, selecting, installing, using, maintaining, and disposing of building-based polymers. Because of their high degree of chemical synthesis, polymers are typically more toxic than wood, glass, or concrete; yet architects, engineers, builders, clients, and the general public remain poorly informed about the deadly accumulation of synthetic polymers that originate in the building industry and that pervade our air, water, and bodies. This question should be central to the very definition and practice of life-cycle assessment, and this chapter outlines a process for developing an industry-based life-cycle index of human health in building (LCI-HHB). After all, traditional LCAs are of little help to anyone not healthy enough to enjoy them.


Sign in / Sign up

Export Citation Format

Share Document