Life Cycle Assessment, an Integrated Vision to Energy Efficiency in the Building Industry

Author(s):  
Silviana Brata ◽  
Raul Catalin Ene ◽  
Daniel Dan ◽  
Iosif Boros
2020 ◽  
Vol 186 ◽  
pp. 107358 ◽  
Author(s):  
D. Satola ◽  
A.B. Kristiansen ◽  
A. Houlihan-Wiberg ◽  
A. Gustavsen ◽  
T. Ma ◽  
...  

2021 ◽  
Vol 5 (1) ◽  
pp. 25-41
Author(s):  
Yordan Garbatov ◽  
Petar Georgiev Georgiev

The present paper provides a thorough analysis of the prerequisites in adopting a new paradigm in the conceptual ship design accounting for the environmental pollution driven by maritime transportations. A survey of presently issued IMO environmental requirements outlines the framework within ship design solutions. Identified and carefully examined are several competing optimal design solutions, based on the energy efficiency design index introduced for shipbuilding, operation cost, and the resale costs at the end of the service life, which are used as input variables in a risk-based analysis. Reviewed are the immediate steps taken in the risk-based conceptual ship design to minimise the risk of environmental pollution while considering the life cycle assessment and energy efficiency of the ship propulsion system. Brought forth in the current paper are the results of a study into the concept design of series of containerships operating in the Black Sea for transporting 20, 40 and 45-foot containers aimed at identifying the main dimensions, capacity, visibility, freeboard, stability, bow, and stern design, propulsion complex and propeller design, control and manoeuvrability, seakeeping, energy efficiency design index, capital, and operational expenditures, that leads to the required fright rate for the ships in the range of 4,000 to 14,000 DWT. Accordingly, a bulk carrier’s risk-based concept ship design methodology is employed for the ship life cycle assessment and energy efficiency in pursuance of the optimal design solution in reference to the energy efficiency design index as most applicable to shipbuilding, operation, and resale costs at the end of the service life, and used as input variables in the risk estimate.


Author(s):  
O.V. Tryboi ◽  
◽  
T.А. Zheliezna ◽  
A.I. Bashtovyi

The purpose of the study is to analyze the current state, existing obstacles and prospects for growing and using energy crops in Ukraine. Different aspects such as the availability of unused land for cultivation, technical and economic indicators of relevant projects, as well as the results of life cycle assessment of heat production from energy crops are taken into account. Research methods include analysis and processing of official statistics on the area of land of different categories in Ukraine; performance of life cycle assessment for growing energy crops for heat production in terms of energy efficiency and reduction of greenhouse gas emissions; carrying out of feasibility study of respective projects. Results of the study show that there are up to 4 million hectares of unused agricultural land in Ukraine annually, which can be used for growing energy crops without creating competition for food production and without violating the criteria of sustainable development. The life cycle of projects for growing perennial energy crops for heat production has high energy efficiency, and the value of greenhouse gas emissions reduction depends significantly on the distance of transportation of biofuels. However, projects for the cultivation of such energy crops as willow, poplar, and miscanthus have economic indicators on the verge of profitability, and therefore may not be attractive enough for investors. Conclusions. Growing and using energy crops is one of the most promising sectors of bioenergy in Ukraine. The advantages of this area are the ability to obtain all types of biofuels (solid, gaseous, liquid biofuels) to replace traditional energy sources, a positive impact on soil (increase in organic matter, phytoremediation of contaminated lands) as well as local economic development and job creation in the regions. To improve the economic performance of the relevant projects, it is necessary to introduce a state subsidy for the cultivation of energy crops at the level of 20-24 thousand UAH per ha, depending on the type of crop.


Author(s):  
Om Taneja

Sustainability goals for buildings are highly acclaimed as public and private sector’s contributions to environmental responsibility, resource efficiency, occupant comfort and well-being. All too often a building’s performance does not meet design expectations, particularly a new building’s energy savings projection that overstates achievable performance. Across the high-performing building industry, these unrealistic energy performance goals have come from, among other things, inadequate modeling and benchmarking practices, unreliable monitoring and equipment controls systems, and significant changes in space usage and tenant improvements. There is still lack of commitment to include operations staff in goal setting and provide adequate budgets for periodic benchmarking, commissioning, and tuning of buildings’ mechanical, electrical and plumbing systems. This paper provides the analytical, performance & prescriptive measures for life cycle assessment of energy efficiency projects which can help in making adaptive changes to buildings systems to suit changing uses, or other internal and external factors that directly or indirectly affect performance.


2021 ◽  
Vol 13 (11) ◽  
pp. 6082
Author(s):  
Zahra Payandeh ◽  
Ahmad Jahanbakhshi ◽  
Tarahom Mesri-Gundoshmian ◽  
Sean Clark

Eco-efficiency has become a cornerstone in improving the environmental and economic performance of farms. The joint use of life cycle assessment (LCA) and data envelopment analysis (DEA), known as LCA + DEA methodology, is an expanding area of research in this quest. LCA estimates the environmental impacts of the products or services, while DEA evaluates their efficiency, providing targets and benchmarks for the inefficient ones. Because energy consumption and environmental quality are highly interdependent, we carried out a study to examine energy efficiency and environmental emissions associated with rain-fed barley farms in Kermanshah Province, Iran. Fifty-four rain-fed barley farms were randomly selected, and production data were collected using questionnaires and interviews. DEA and LCA were used to quantify and compare environmental indicators before and after efficiency improvements were applied to the farms. To accomplish this, efficient and inefficient farms were identified using DEA. Then environmental emissions were measured again after inefficient farms reached the efficiency limit through management improvements. The results showed that by managing resource use, both energy consumption and environmental emissions can be reduced without yield loss. The initial amount of energy consumed averaged 13,443 MJ/ha while that consumed in the optimal state was determined to be 12,509 MJ/h, resulting in a savings of 934 MJ/ha. Based on the results of DEA, reductions in nitrogen fertilizer, diesel fuel, and phosphate fertilizer offered the greatest possibilities for energy savings. Combining DEA and LCA showed that efficient resource management could reduce emissions important to abiotic depletion (fossil fuels), human toxicity, marine aquatic ecotoxicity, global warming (GWP100a), freshwater aquatic ecotoxicity, and terrestrial ecotoxicity. This study contributes toward systematically building knowledge about crop production with the joint use of LCA + DEA for eco-efficiency assessment.


Sign in / Sign up

Export Citation Format

Share Document