A Review of the Application of LCA for Sustainable Buildings in Asia

2013 ◽  
Vol 724-725 ◽  
pp. 1597-1601 ◽  
Author(s):  
Ahmad Faiz Abd Rashid ◽  
Sumiani Yusoff ◽  
Noorsaidi Mahat

The introduction of life cycle assessment (LCA) to the building industry is important due to its ability to systematically quantify every environmental impact involved in every process from cradle to grave. Within the last two decades, research on LCA has increased considerably covering from manufacturing of building materials and construction processes. However, the LCA application for buildings in Asia are limited and fragmented due to different research objectives, type of buildings and locations. This paper has attempted to collect and review the application of LCA in the building industry in Asia from the selected publications over the last 12 years, from 2001 to 2012. The result shows that most LCA research basic methodology is based on International Organization of Standardization (ISO) 14040 series but with variance. It is found that the operational phase consume highest energy and concrete responsible for the highest total embodied energy and environmental impact. It also suggested that building material with low initial embodied energy does not necessarily have low life cycle energy. Overall, findings from LCA studies can help to make informed decisions in terms of environmental impact and help realizing sustainable buildings in the future.

2020 ◽  
Vol 12 (14) ◽  
pp. 5666 ◽  
Author(s):  
Girts Bumanis ◽  
Laura Vitola ◽  
Ina Pundiene ◽  
Maris Sinka ◽  
Diana Bajare

To decrease the environmental impact of the construction industry, energy-efficient insulation materials with low embodied production energy are needed. Lime-hemp concrete is traditionally recognized as such a material; however, the drawbacks of this type of material are associated with low strength gain, high initial moisture content, and limited application. Therefore, this review article discusses alternatives to lime-hemp concrete that would achieve similar thermal properties with an equivalent or lower environmental impact. Binders such as gypsum, geopolymers, and starch are proposed as alternatives, due to their performance and low environmental impact, and available research is summarized and discussed in this paper. The summarized results show that low-density thermal insulation bio-composites with a density of 200–400 kg/m3 and thermal conductivity (λ) of 0.06–0.09 W/(m × K) can be obtained with gypsum and geopolymer binders. However, by using a starch binder it is possible to produce ecological building materials with a density of approximately 100 kg/m3 and thermal conductivity (λ) as low as 0.04 W/(m × K). In addition, a preliminary life cycle assessment was carried out to evaluate the environmental impact of reviewed bio-composites. The results indicate that such bio-composites have a low environmental impact, similar to lime-hemp concrete.


Energies ◽  
2020 ◽  
Vol 13 (8) ◽  
pp. 1905 ◽  
Author(s):  
Ming Hu

Knowledge and research tying the environmental impact and embodied energy together is a largely unexplored area in the building industry. The aim of this study is to investigate the practicality of using the ratio between embodied energy and embodied carbon to measure the building’s impact. This study is based on life-cycle assessment and proposes a new measure: life-cycle embodied performance (LCEP), in order to evaluate building performance. In this project, eight buildings located in the same climate zone with similar construction types are studied to test the proposed method. For each case, the embodied energy intensities and embodied carbon coefficients are calculated, and four environmental impact categories are quantified. The following observations can be drawn from the findings: (a) the ozone depletion potential could be used as an indicator to predict the value of LCEP; (b) the use of embodied energy and embodied carbon independently from each other could lead to incomplete assessments; and (c) the exterior wall system is a common significant factor influencing embodied energy and embodied carbon. The results lead to several conclusions: firstly, the proposed LCEP ratio, between embodied energy and embodied carbon, can serve as a genuine indicator of embodied performance. Secondly, environmental impact categories are not dependent on embodied energy, nor embodied carbon. Rather, they are proportional to LCEP. Lastly, among the different building materials studied, metal and concrete express the highest contribution towards embodied energy and embodied carbon.


2020 ◽  
Vol 993 ◽  
pp. 1473-1480
Author(s):  
Yan Jiao Zhang ◽  
Li Ping Ma ◽  
Shi Wei Ren ◽  
Meng Chi Huang ◽  
Ying Wang ◽  
...  

With the emphasis of national policies on green manufacturing and the recognition of the people for green development, expanding the green assessment of products will be the general trend. In this study the life cycle assessment method was used to compile a list of resources, energy consumption and pollutant emissions during the life cycle of typical ordinary gypsum plasterboard and functional phase-change gypsum plasterboard, the key environmental impact indicators of both products during the life cycle calculated, the key stages affecting the environmental performance of products analyzed and identified, and the difference in environmental impacts between phase-change gypsum plasterboard and ordinary gypsum plasterboard compared and analyzed, for guiding the selection of green building materials and the development of ecological building materials. The results show that the global warming potential of phase-change gypsum plasterboard is 3.42 kgCO2 equivalent/m2, the non-renewable resource depletion potential is 2.25×10-5 kgSb equivalent/m2, the respiratory inorganic is 1.97×10-3 kgPM2.5 equivalent/m2, the eutrophication is 1.21×10-3 kgPO43- equivalent/m2, and the acidification is 9.47×10-3 kgSO2 equivalent/m2. Compared with ordinary gypsum plasterboard, the phase-change gypsum plasterboard shows the biggest increase by 874.03% in non-renewable resource depletion potential. The major environmental impact of ordinary gypsum plasterboard in the life cycle is mainly from energy use, and the transport process is the main stage of eutrophication. The use of phase-change materials in the phase-change gypsum plasterboard is the main stage causing environmental impact.


2021 ◽  
Author(s):  
◽  
Brian Berg

<p>This research simplifies the calculation of the Initial Embodied Energy (iEE) for commercial office buildings. The result is the improved integration of Life Cycle Assessment (LCA) assessments of building materials into the early stages of the building design process (sketch design). This maximises the effectiveness of implementing design solutions to lower a building’s environmental impact.  This thesis research proposes that building Information Models (BIM) will make calculating building material quantities easier, to simplify LCA calculations, all to improve their integration into existing sketch design phase practices, and building design decisions. This is achieved by developing a methodology for using BIM LCA tools to calculate highly detailed material quantities from a simple BIM model of sketch design phase building information. This is methodology is called an Initial Embodied Energy Building Information Model Life Cycle Assessment Building Performance Sketch (iEE BIM LCA BPS). Using this methodology calculates iEE results that are accurate, and represent a sufficient proportion (complete) of a building’s total iEE consumption, making them useful for iEE decision-making.  iEE is one example of a LCA-based indicator that was used to test, and prove the feasibility of the iEE BIM LCA BPS methodology. Proving this, the research method tests the accuracy that a BIM model can calculate case study building’s building material quantities. This included developing; a methodology for how to use the BIM tool Revit to calculate iEE; a functional definition of an iEE BIM LCA BPS based on the environmental impact, and sketch design decisions effecting building materials, and elements; and an EE simulation calibration accuracy assessment methodology, complete with a function definition of the accuracy required of an iEE simulation to ensure it’s useful for sketch design decision-making.  Two main tests were conducted as part of proving the iEE BIM LCA BPS’ feasibility. Test one assessed and proved that the iEE BIM LCA BPS model based on sketch design information does represent a sufficient proportion (complete) of a building’s total iEE consumption, so that are useful for iEE decision-making. This was tested by comparing the building material quantities from a SOQ (SOQ) produced to a sketch design level of detail (truth model 3), to an as-built level of detail, defined as current iEE best practices (truth model 1). Subsequent to proving that the iEE BIM LCA BPS is sufficiently complete, test two assessed if a BIM model and tool could calculate building material quantities accurately compared to truth model 3. The outcome was answering the research question of, how detailed does a BIM model need to be to calculate accurate building material quantities for a building material LCA (LCA) assessment?  The inference of this thesis research is a methodology for using BIM models to calculate the iEE of New Zealand commercial office buildings in the early phases of the design process. The outcome was that a building design team’s current level of sketch design phase information is sufficiently detailed for sketch design phase iEE assessment. This means, that iEE and other LCA-based assessment indicators can be integrated into a design team’s existing design process, practices, and decisions, with no restructuring required.</p>


2013 ◽  
Vol 8 (2) ◽  
pp. 93-102
Author(s):  
Milan Porhincak ◽  
Adriana Estokova

Abstract Building activity has recently led to the deterioration of environment and has become unsustainable. Several strategies have been introduced in order to minimize consumption of energy and resulting CO2 emissions having their origin in the operational phase. But also other stages of Life Cycle should are important to identify the overall environmental impact of construction sector. In this paper 5 similar Slovak buildings (family houses) were analyzed in terms of environmental performance of building materials used for their structures. Evaluation included the weight of used materials, embodied energy and embodied CO2 and SO2 emissions. Analysis has proven that the selection of building materials is an important factor which influences the environmental profile. Findings of the case study indicated that materials like concrete, ceramic or thermal insulation materials based on polystyrene and mineral wool are ones with the most negative environmental impact.


Author(s):  
Jiawen Zhang ◽  
Toru Matsumoto

With the acceleration of economic development and urbanization in China, sewage sludge generation has sharply increased. To maximize energy regeneration and resource recovery, it is crucial to analyze the environmental impact and sustainability of different sewage sludge recycling systems based on life cycle assessment. This study analyzed four sewage sludge recycling systems in China through life cycle assessment using the ReCipe method, namely aerobic composting, anaerobic digestion and biomass utilization, incineration, and heat utilization and using for building materials. In particular, the key pollution processes and pollutants in sewage sludge recycling systems were analyzed. The results demonstrated that aerobic composting is the most environmentally optimal scenario for reducing emissions and energy consumption. The lowest environmental impact and operating costs were achieved by making bricks and using them as building materials; this was the optimal scenario for sludge treatment and recycling. In contrast, incineration and heat utilization had the highest impact on health and marine toxicity. Anaerobic digestion and biomass utilization had the highest impact on climate change, terrestrial acidification, photochemical oxidant formation, and particulate matter formation. In the future, policy designers should prioritize building material creation for sludge treatment and recycling.


2021 ◽  
Vol ahead-of-print (ahead-of-print) ◽  
Author(s):  
Cagla Keles ◽  
Fatih Yazicioglu

PurposeThe purpose of this paper is to identify the sustainability conditions of primary schools in Turkey within the scope of the life cycle assessment (LCA). It is aimed to develop optimum alternatives to reduce the environmental impact of primary schools and reach environmental sustainability targets of the sustainable development goals in Turkey.Design/methodology/approachFrom the construction project of 103 buildings located in Istanbul, 10 case buildings with various typical plans were chosen for analysis. The results regarding their life cycle energy and carbon emission for material production, operation and maintenance stages were calculated for a lifespan of 50 years. Results were evaluated and compared within the scope of environmental sustainability. Optimum alternatives for improving the environmental sustainability and performances of selected case buildings’ facades were developed, and the life cycle energy and carbon emission for proposed conditions were calculated. The obtained results were evaluated for current and proposed conditions.FindingsResults showed that reinforced concrete material contributes the most to the life cycle-embodied energy and CO2 emission of buildings. Cooling load increases the life cycle operational energy (LCOE) and CO2 emission of buildings. Using high-performance glazing significantly reduces LCOE and CO2 emission. Recycled and fiber-based materials have significant potential for reducing life cycle-embodied energy and CO2 emission.Originality/valueThis study has been developed in response to achieving sustainable development targets on public buildings in Turkey. In this regard, external walls of primary schools were analyzed within the scope of LCA and recommendations were made to contribute to the policies and regulations requested by the Government of Turkey. This study proves that alternative and novel materials have great potential for achieving sustainable public buildings. The study answers to questions about reducing the environmental impact of primary school buildings by using LCA approach with a holistic point of view.


Agriculture ◽  
2018 ◽  
Vol 8 (10) ◽  
pp. 165 ◽  
Author(s):  
Pedro Henrique Presumido ◽  
Fernando Sousa ◽  
Artur Gonçalves ◽  
Tatiane Cristina Dal Bosco ◽  
Manuel Feliciano

The beef supply chain has multiple negative impacts on the environment. A method widely used to measure impacts from both the use of resources and the emissions generated by this sector is the life cycle assessment (LCA) (ISO 14040). This study aimed to evaluate a semi-intensive system (SIS) and an extensive organic system (EOS), combined with two different slaughterhouses located in the northeast of Portugal. The studied slaughterhouses are similar in size but differ in number of slaughters and in sources of thermal energy: natural gas (Mng) vs. biomass pellets (Mp). Four categories of environmental impact were evaluated: global warming potential (GWP), acidification potential (AP), eutrophication potential (EP), and photochemical ozone creation potential (POCP). As expected, higher impacts were found for SIS for all studied impact categories. Slaughterhouse activities, fertilizer production, and solid waste treatment stages showed little contribution when compared to animal production. Concerning the slaughterhouses activities, the main sources of environmental impact were the use of energy (electric and thermal) and by-products transportation.


2019 ◽  
Vol 944 ◽  
pp. 1152-1157
Author(s):  
Yan Jiao Zhang ◽  
Wen Xiu Liu ◽  
Wen Bin Cao ◽  
Chun Zhi Zhao ◽  
Jia Jun Peng

With people's increasing demands for the improvement of air quality and quality of life, the demand for new decorative materials with air purification function will be increasing. This study is based on a life cycle assessment (LCA)-based approach to develop a list of resources, energy consumption and pollutant emissions in the life cycle of typical visible light photocatalytic liquid products, to calculate the important environmental impact of visible light photocatalytic liquid products, and to analyze and identify the critical stages affecting environmental performance of product, to guide the selection of green buildings and the development of ecological building materials. The results show that, for the purpose of visible light photocatalytic liquid, the global warming potential is 40.97kgCO2 equivalent/t, the abiotic depletion potential is 9.34×10-5kgSb equivalent/t, the respiratory inorganic index is 7.88×10-2kgPM2.5 equivalent/t, and the eutrophication is 4.13×10-2kgPO43-equivalent/t, acidification effect is 0.34kgSO2 equivalent/t; and the environmental impact in the product life cycle for the purpose of this study are mainly resulted from energy use, and transport process represents the main stage of eutrophication.


2018 ◽  
Vol 10 (8) ◽  
pp. 2820 ◽  
Author(s):  
Hyojin Lim ◽  
Sungho Tae ◽  
Seungjun Roh

In recent years, much research has been conducted internationally to quantitatively evaluate the environmental impact of buildings in order to reduce greenhouse gas emissions and address associated environmental problems. With this in mind, the Green Standard for Energy and Environmental Design (G-SEED) in South Korea was revised in 2016. However, the various possible evaluation methods make it difficult to conduct building life cycle assessment. Moreover, compared to research on residential buildings, life cycle assessment research on non-residential buildings is scarce. Therefore, this study analyzes primary building materials for life cycle assessment of current non-residential buildings to support Korean G-SEED requirements. Design documents for various non-residential buildings are obtained, and the types and numbers of materials used in production are determined. Next, the primary building materials contributing high cumulative weight based on the ISO14040 series of standards are analyzed. We then review the most commonly-used building materials while considering non-residential building types and structures. In addition, construction material reliability is evaluated using the environmental impact unit value. With our results, by suggesting the primary building materials in non-residential buildings, efficient life cycle assessment of non-residential buildings is possible in terms of time and cost.


Sign in / Sign up

Export Citation Format

Share Document