Biomass Models and Biomass Carbon Stocks

Author(s):  
Arun Jyoti Nath ◽  
Biplab Brahma ◽  
Ashesh Kumar Das
2021 ◽  
Vol 8 (1) ◽  
Author(s):  
Ana Aguirre ◽  
Miren del Río ◽  
Ricardo Ruiz-Peinado ◽  
Sonia Condés

Abstract Background National and international institutions periodically demand information on forest indicators that are used for global reporting. Among other aspects, the carbon accumulated in the biomass of forest species must be reported. For this purpose, one of the main sources of data is the National Forest Inventory (NFI), which together with statistical empirical approaches and updating procedures can even allow annual estimates of the requested indicators. Methods Stand level biomass models, relating the dry weight of the biomass with the stand volume were developed for the five main pine species in the Iberian Peninsula (Pinus sylvestris, Pinus pinea, Pinus halepensis, Pinus nigra and Pinus pinaster). The dependence of the model on aridity and/or mean tree size was explored, as well as the importance of including the stand form factor to correct model bias. Furthermore, the capability of the models to estimate forest carbon stocks, updated for a given year, was also analysed. Results The strong relationship between stand dry weight biomass and stand volume was modulated by the mean tree size, although the effect varied among the five pine species. Site humidity, measured using the Martonne aridity index, increased the biomass for a given volume in the cases of Pinus sylvestris, Pinus halepensis and Pinus nigra. Models that consider both mean tree size and stand form factor were more accurate and less biased than those that do not. The models developed allow carbon stocks in the main Iberian Peninsula pine forests to be estimated at stand level with biases of less than 0.2 Mg∙ha− 1. Conclusions The results of this study reveal the importance of considering variables related with environmental conditions and stand structure when developing stand dry weight biomass models. The described methodology together with the models developed provide a precise tool that can be used for quantifying biomass and carbon stored in the Spanish pine forests in specific years when no field data are available.


2016 ◽  
Vol 2016 ◽  
pp. 1-8 ◽  
Author(s):  
Lawrence H. Tanner ◽  
Megan T. Wilckens ◽  
Morgan A. Nivison ◽  
Katherine M. Johnson

We measured carbon stocks at two forest reserves in the cloud forest region of Monteverde, comparing cleared land, experimental secondary forest plots, and mature forest at each location to assess the effectiveness of reforestation in sequestering biomass and soil carbon. The biomass carbon stock measured in the mature forest at the Monteverde Institute is similar to other measurements of mature tropical montane forest biomass carbon in Costa Rica. Local historical records and the distribution of large trees suggest a mature forest age of greater than 80 years. The forest at La Calandria lacks historical documentation, and dendrochronological dating is not applicable. However, based on the differences in tree size, above-ground biomass carbon, and soil carbon between the Monteverde Institute and La Calandria sites, we estimate an age difference of at least 30 years of the mature forests. Experimental secondary forest plots at both sites have accumulated biomass at lower than expected rates, suggesting local limiting factors, such as nutrient limitation. We find that soil carbon content is primarily a function of time and that altitudinal differences between the study sites do not play a role.


Land ◽  
2021 ◽  
Vol 10 (11) ◽  
pp. 1217
Author(s):  
Manan Bhan ◽  
Simone Gingrich ◽  
Sarah Matej ◽  
Steffen Fritz ◽  
Karl-Heinz Erb

Tree cover (TC) and biomass carbon stocks (CS) are key parameters for characterizing vegetation and are indispensable for assessing the role of terrestrial ecosystems in the global climate system. Land use, through land cover change and land management, affects both parameters. In this study, we quantify the empirical relationship between TC and CS and demonstrate the impacts of land use by combining spatially explicit estimates of TC and CS in actual and potential vegetation (i.e., in the hypothetical absence of land use) across the global tropics (~23.4° N to 23.4° S). We find that land use strongly alters both TC and CS, with stronger effects on CS than on TC across tropical biomes, especially in tropical moist forests. In comparison to the TC-CS correlation observed in the potential vegetation (biome-level R based on tropical ecozones = 0.56–0.90), land use strongly increases this correlation (biome-level R based on tropical ecozones = 0.87–0.94) in the actual vegetation. Increased correlations are not only the effects of land cover change. We additionally identify land management impacts in closed forests, which cause CS reductions. Our large-scale assessment of the TC-CS relationship can inform upcoming remote sensing efforts to map ecosystem structure in high spatio-temporal detail and highlights the need for an explicit focus on land management impacts in the tropics.


2020 ◽  
Vol 11 (1) ◽  
Author(s):  
Slamet Santosa ◽  
Muhamad Ruslan Umar ◽  
Dody Priosambodo ◽  
Rizki Amalia Puji Santosa

Teak Tectona grandis Linn is still used as the main product in the form of wood, while other products, especially environmental services have not received much attention. This study analyzed biomass, carbon stocks and decomposition rate of leaf litter in teak plantations in city forest of Hasanuudin University, Makassar. The individual biomass of teak plants is calculated using the allometric equation, Y=0.11x ρ x D2.62. Carbon stocks were analyzed using a formulation, C=0.47xB. The leaf litter decomposition rate is expressed as the ratio of the remaining litter dry weight, with the formulation, X= (A-B)/A. The number of teak plants in 5 sample plots were 239 trees with an average stem diameter of 20.6cm and an average height of 9.02m. Total biomass in 5 sample plots was 51,712.61g. Carbon stock in 5 sample plots was 24,304.92g. Decomposition rate average of leaf litter of 24.4g during 60 days incubation. The existence of teak plantations is able to reduce CO2 in the atmosphere by as much as 89,199.06gCO2 and resulting in a decomposition rate of teak leaf litter 0.4g per day


Forests ◽  
2019 ◽  
Vol 10 (7) ◽  
pp. 582 ◽  
Author(s):  
Hanyue Zhang ◽  
Zhongke Feng ◽  
Panpan Chen ◽  
Xiaofeng Chen

Global climate change has raised concerns about the relationship between ecosystems and forests, which is a core component of the carbon cycle and a critical factor in understanding and mitigating the effects of climate change. Forest models and sufficient information for predictions are important for ensuring efficient afforestation activities and sustainable forest development. Based on the theory of difference equations and the general rules of tree growth, this study established a difference equation for the relationship between the ratio of tree diameter at breast height (DBH) to the tree height and age of age of China’s main arbor species. A comparison with equations that represent the traditional tree growth models, i.e., Logistic and Richards equations, showed that the difference equations exhibited higher precision for both fitting and verification data. Moreover, the biomass carbon stocks (BCS) of Chinese forests from 2013 to 2050 were predicted by combining the 8th Chinese Ministry of Forestry and partial continuous forest inventory (CFI) data sets. The results showed that the BCS of Chinese forests would increase from 7342 to 11,030 terra grams of carbon (Tg C) in 2013–2050, with an annual biomass C (carbon) sink of 99.68 Tg C year−1, and they indicated that the Chinese land-surface forest vegetation has an important carbon sequestration capability.


2016 ◽  
Vol 374 ◽  
pp. 1-10 ◽  
Author(s):  
Bing Xu ◽  
Yude Pan ◽  
Alain F. Plante ◽  
Arthur Johnson ◽  
Jason Cole ◽  
...  

2014 ◽  
Vol 38 ◽  
pp. 550-560 ◽  
Author(s):  
Gureveen ARORA ◽  
Sumit CHATURVEDI ◽  
Rajesh KAUSHAL ◽  
Ajeet NAIN ◽  
Salil TEWARI ◽  
...  

2010 ◽  
Vol 259 (7) ◽  
pp. 1225-1231 ◽  
Author(s):  
Zhaodi Guo ◽  
Jingyun Fang ◽  
Yude Pan ◽  
Richard Birdsey

Sign in / Sign up

Export Citation Format

Share Document