Study on Jurassic Coal and Carbonaceous Mudstone as Oil Source Rocks in Tuha Basin, North-Western China

2020 ◽  
pp. 135-146
Author(s):  
Jin Kuili ◽  
Yao Suping ◽  
Wei Hui ◽  
Tang Yaogang ◽  
Fang Jiahu ◽  
...  
Author(s):  
WILLIAM GARDENER

Prince Henri d'Orleans, precluded by French law from serving his country in the profession of arms, had his attention turned early towards exploration. In 1889, accompanied by the experienced traveller Gabriel Bonvalet, he set out from Paris to reach Indo-China overland by way of Central Asia, Tibet and western and south western China. The journey made contributions in the problems of the whereabouts of Lap Nor and the configuration of the then unexplored northern plateau of Tibet; and in botany it produced some species new to science. The party reached Indo-China in 1890. In 1895, having organised an expedition better equipped for topographical survey and for investigations in the fields of natural history and ethnography, Prince Henri set out from Hanoi with the intention of exploring the Mekong through the Chinese province of Yunnan. After proceeding up the left bank of the Salween for a brief part of its course and then alternating between the right and left banks of the Mekong as far up as Tzeku, the party found it advisable to enter Tibet in a north westerly direction through the province of Chamdo and instead crossed the south eastern extremity of the country, the Zayul, by a difficult track which led them to the country of the Hkamti Shans in present day Upper Burma, and thence to India completing a journey of 2000 miles, "1500 of which had been previously untrodden" (Prince Henri). West of the Mekong, the journey established that the Salween, which some geographers had claimed took its rise in or near north western Yunnan, in fact rose well north in Tibet, and that, contrary to previous opinions, the principal headwater of the Irrawaddy rose no further north than latitude 28°30'. Botanical collections were confined to Yunnan, where the tracks permitted mule transport, and they produced a number of species new to science and extended the range of distribution of species already known.


2021 ◽  
Vol 18 (2) ◽  
pp. 398-415
Author(s):  
He Bi ◽  
Peng Li ◽  
Yun Jiang ◽  
Jing-Jing Fan ◽  
Xiao-Yue Chen

AbstractThis study considers the Upper Cretaceous Qingshankou Formation, Yaojia Formation, and the first member of the Nenjiang Formation in the Western Slope of the northern Songliao Basin. Dark mudstone with high abundances of organic matter of Gulong and Qijia sags are considered to be significant source rocks in the study area. To evaluate their development characteristics, differences and effectiveness, geochemical parameters are analyzed. One-dimensional basin modeling and hydrocarbon evolution are also applied to discuss the effectiveness of source rocks. Through the biomarker characteristics, the source–source, oil–oil, and oil–source correlations are assessed and the sources of crude oils in different rock units are determined. Based on the results, Gulong and Qijia source rocks have different organic matter primarily detrived from mixed sources and plankton, respectively. Gulong source rock has higher thermal evolution degree than Qijia source rock. The biomarker parameters of the source rocks are compared with 31 crude oil samples. The studied crude oils can be divided into two groups. The oil–source correlations show that group I oils from Qing II–III, Yao I, and Yao II–III members were probably derived from Gulong source rock and that only group II oils from Nen I member were derived from Qijia source rock.


Author(s):  
Sara LIFSHITS

ABSTRACT Hydrocarbon migration mechanism into a reservoir is one of the most controversial in oil and gas geology. The research aimed to study the effect of supercritical carbon dioxide (СО2) on the permeability of sedimentary rocks (carbonates, argillite, oil shale), which was assessed by the yield of chloroform extracts and gas permeability (carbonate, argillite) before and after the treatment of rocks with supercritical СО2. An increase in the permeability of dense potentially oil-source rocks has been noted, which is explained by the dissolution of carbonates to bicarbonates due to the high chemical activity of supercritical СО2 and water dissolved in it. Similarly, in geological processes, the introduction of deep supercritical fluid into sedimentary rocks can increase the permeability and, possibly, the porosity of rocks, which will facilitate the primary migration of hydrocarbons and improve the reservoir properties of the rocks. The considered mechanism of hydrocarbon migration in the flow of deep supercritical fluid makes it possible to revise the time and duration of the formation of gas–oil deposits decreasingly, as well as to explain features in the formation of various sources of hydrocarbons and observed inflow of oil into operating and exhausted wells.


2011 ◽  
Vol 162 (1) ◽  
pp. 201-219 ◽  
Author(s):  
SHU-AN JI ◽  
JESSIE ATTERHOLT ◽  
JINGMAI K. O'CONNOR ◽  
MATTHEW C. LAMANNA ◽  
JERALD D. HARRIS ◽  
...  

2017 ◽  
Vol 163 (3) ◽  
pp. 523-535 ◽  
Author(s):  
Zhengcai Zhang ◽  
Zhibao Dong ◽  
Guangqian Qian ◽  
Guoxi Wu ◽  
Xujia Cui

Sign in / Sign up

Export Citation Format

Share Document