Sulfate Activation

Author(s):  
G. J. Mulder
Keyword(s):  
2009 ◽  
Vol 191 (10) ◽  
pp. 3415-3419 ◽  
Author(s):  
Hyun Sook Lee ◽  
Yun Jae Kim ◽  
Jung-Hyun Lee ◽  
Sung Gyun Kang

ABSTRACT Two hypothetical genes were functionally verified to be a pyrophosphatase and a PAP phosphatase in Thermococcus onnurineus NA1. This is the first report of the pyrophosphatases and the PAP phosphatases being organized in the gene clusters of the sulfate activation system only in T. onnurineus NA1 and “Pyrococcus abyssi.”


Microbiology ◽  
2004 ◽  
Vol 150 (6) ◽  
pp. 1681-1686 ◽  
Author(s):  
Rachel Pinto ◽  
Quing Xui Tang ◽  
Warwick J. Britton ◽  
Thomas S. Leyh ◽  
James A. Triccas

Sulfur metabolism has been implicated in the virulence, antibiotic resistance and anti-oxidant defence of Mycobacterium tuberculosis. Despite its human disease relevance, sulfur metabolism in mycobacteria has not yet been fully characterized. ATP sulfurylase catalyses the synthesis of activated sulfate (adenosine 5′-phosphosulfate, APS), the first step in the reductive assimilation of sulfate. Expression of the M. tuberculosis cysD gene, predicted to encode the adenylyl-transferase subunit of ATP sulfurylase, is upregulated by the bacilli inside its preferred host, the macrophage. This study demonstrates that cysD and cysNC orthologues exist in M. tuberculosis and constitute an operon whose expression is induced by sulfur limitation and repressed by the presence of cysteine, a major end-product of sulfur assimilation. The cysDNC genes are also induced upon exposure to oxidative stress, suggesting regulation of sulfur assimilation by M. tuberculosis in response to toxic oxidants. To ensure that the cysDNC operon encoded the activities predicted by its primary sequence, and to begin to characterize the products of the operon, they were expressed in Escherichia coli, purified to homogeneity, and tested for their catalytic activities. The CysD and CysNC proteins were shown to form a multifunctional enzyme complex that exhibits the three linked catalytic activities that constitute the sulfate activation pathway.


2000 ◽  
Vol 379 (1) ◽  
pp. 1-6 ◽  
Author(s):  
Francisco Laveda ◽  
Estrella Núñez-Delicado ◽  
Francisco García-Carmona ◽  
Alvaro Sánchez-Ferrer

Author(s):  
Romano Humberto ◽  
De Meio
Keyword(s):  

2003 ◽  
Vol 69 (4) ◽  
pp. 2006-2014 ◽  
Author(s):  
Carla Snoeck ◽  
Christel Verreth ◽  
Ismael Hernández-Lucas ◽  
Esperanza Martínez-Romero ◽  
Jos Vanderleyden

ABSTRACT Sinorhizobium sp. strain BR816 possesses two nodPQ copies, providing activated sulfate (3′-phosphoadenosine-5′-phosphosulfate [PAPS]) needed for the biosynthesis of sulfated Nod factors. It was previously shown that the Nod factors synthesized by a nodPQ double mutant are not structurally different from those of the wild-type strain. In this study, we describe the characterization of a third sulfate activation locus. Two open reading frames were fully characterized and displayed the highest similarity with the Sinorhizobium meliloti housekeeping ATP sulfurylase subunits, encoded by the cysDN genes. The growth characteristics as well as the levels of Nod factor sulfation of a cysD mutant (FAJ1600) and a nodP1 nodQ2 cysD triple mutant (FAJ1604) were determined. FAJ1600 shows a prolonged lag phase only with inorganic sulfate as the sole sulfur source, compared to the wild-type parent. On the other hand, FAJ1604 requires cysteine for growth and produces sulfate-free Nod factors. Apigenin-induced nod gene expression for Nod factor synthesis does not influence the growth characteristics of any of the strains studied in the presence of different sulfur sources. In this way, it could be demonstrated that the “household” CysDN sulfate activation complex of Sinorhizobium sp. strain BR816 can additionally ensure Nod factor sulfation, whereas the symbiotic PAPS pool, generated by the nodPQ sulfate activation loci, can be engaged for sulfation of amino acids. Finally, our results show that rhizobial growth defects are likely the reason for a decreased nitrogen fixation capacity of bean plants inoculated with cysD mutant strains, which can be restored by adding methionine to the plant nutrient solution.


2020 ◽  
Vol 8 (8) ◽  
pp. 1229
Author(s):  
Herbert J. Santos ◽  
Yoko Chiba ◽  
Takashi Makiuchi ◽  
Saki Arakawa ◽  
Yoshitaka Murakami ◽  
...  

Mitochondrial matrix proteins synthesized in the cytosol often contain amino (N)-terminal targeting sequences (NTSs), or alternately internal targeting sequences (ITSs), which enable them to be properly translocated to the organelle. Such sequences are also required for proteins targeted to mitochondrion-related organelles (MROs) that are present in a few species of anaerobic eukaryotes. Similar to other MROs, the mitosomes of the human intestinal parasite Entamoeba histolytica are highly degenerate, because a majority of the components involved in various processes occurring in the canonical mitochondria are either missing or modified. As of yet, sulfate activation continues to be the only identified role of the relic mitochondria of Entamoeba. Mitosomes influence the parasitic nature of E. histolytica, as the downstream cytosolic products of sulfate activation have been reported to be essential in proliferation and encystation. Here, we investigated the position of the targeting sequence of one of the mitosomal matrix enzymes involved in the sulfate activation pathway, ATP sulfurylase (AS). We confirmed by immunofluorescence assay and subcellular fractionation that hemagluttinin (HA)-tagged EhAS was targeted to mitosomes. However, its ortholog in the δ-proteobacterium Desulfovibrio vulgaris, expressed as DvAS-HA in amoebic trophozoites, indicated cytosolic localization, suggesting a lack of recognizable mitosome targeting sequence in this protein. By expressing chimeric proteins containing swapped sequences between EhAS and DvAS in amoebic cells, we identified the ITSs responsible for mitosome targeting of EhAS. This observation is similar to other parasitic protozoans that harbor MROs, suggesting a convergent feature among various MROs in favoring ITS for the recognition and translocation of targeted proteins.


Sign in / Sign up

Export Citation Format

Share Document