The Mycobacterium tuberculosis cysD and cysNC genes form a stress-induced operon that encodes a tri-functional sulfate-activating complex

Microbiology ◽  
2004 ◽  
Vol 150 (6) ◽  
pp. 1681-1686 ◽  
Author(s):  
Rachel Pinto ◽  
Quing Xui Tang ◽  
Warwick J. Britton ◽  
Thomas S. Leyh ◽  
James A. Triccas

Sulfur metabolism has been implicated in the virulence, antibiotic resistance and anti-oxidant defence of Mycobacterium tuberculosis. Despite its human disease relevance, sulfur metabolism in mycobacteria has not yet been fully characterized. ATP sulfurylase catalyses the synthesis of activated sulfate (adenosine 5′-phosphosulfate, APS), the first step in the reductive assimilation of sulfate. Expression of the M. tuberculosis cysD gene, predicted to encode the adenylyl-transferase subunit of ATP sulfurylase, is upregulated by the bacilli inside its preferred host, the macrophage. This study demonstrates that cysD and cysNC orthologues exist in M. tuberculosis and constitute an operon whose expression is induced by sulfur limitation and repressed by the presence of cysteine, a major end-product of sulfur assimilation. The cysDNC genes are also induced upon exposure to oxidative stress, suggesting regulation of sulfur assimilation by M. tuberculosis in response to toxic oxidants. To ensure that the cysDNC operon encoded the activities predicted by its primary sequence, and to begin to characterize the products of the operon, they were expressed in Escherichia coli, purified to homogeneity, and tested for their catalytic activities. The CysD and CysNC proteins were shown to form a multifunctional enzyme complex that exhibits the three linked catalytic activities that constitute the sulfate activation pathway.

2020 ◽  
Vol 50 (1) ◽  
Author(s):  
Seunghyun Kim ◽  
Hee-Ock Boo ◽  
Taeho Ahn ◽  
Chun-Sik Bae

AbstractErythronium japonicum (E. japonicum) and Corylopsis coreana Uyeki (C. coreana Uyeki, Korean winter hazel) have been shown to significantly decrease 1,3-dichloro-2-propanol (1,3-DCP)-induced generation of reactive oxygen species and CYP2E1 activity in HuH7, human hepatocytes. In this study, we expanded upon the previous study and investigated the effects of E. japonicum and C. coreana Uyeki extracts on 1,3-DCP-induced liver damage in rats. The pre-treatment of rats with these extracts alleviated a decrease in body weight and reduced 1,3-DCP-induced increase in catalytic activities of hepatic enzymes, such as aspartate aminotransferase and alanine aminotransferase, in the serum. Moreover, treatment with the extracts restored the 1,3-DCP-induced decreases in anti-oxidant enzyme activities, such as the activities of superoxide dismutase and catalase, in the rat liver. Histopathological studies also strongly supported the results of enzyme activities. These results suggest a possibility that the extracts of E. japonicum and C. coreana Uyeki can be a remedy for alleviating 1,3-DCP-induced liver damage in animals.


2006 ◽  
Vol 450 (1) ◽  
pp. 20-29 ◽  
Author(s):  
Pallavi Phartiyal ◽  
Won-Seok Kim ◽  
Rebecca E. Cahoon ◽  
Joseph M. Jez ◽  
Hari B. Krishnan

2006 ◽  
Vol 188 (2) ◽  
pp. 477-486 ◽  
Author(s):  
Gabriela Gago ◽  
Daniel Kurth ◽  
Lautaro Diacovich ◽  
Shiou-Chuan Tsai ◽  
Hugo Gramajo

ABSTRACT Pathogenic mycobacteria contain a variety of unique fatty acids that have methyl branches at an even-numbered position at the carboxyl end and a long n-aliphatic chain. One such group of acids, called mycocerosic acids, is found uniquely in the cell wall of pathogenic mycobacteria, and their biosynthesis is essential for growth and pathogenesis. Therefore, the biosynthetic pathway of the unique precursor of such lipids, methylmalonyl coenzyme A (CoA), represents an attractive target for developing new antituberculous drugs. Heterologous protein expression and purification of the individual subunits allowed the successful reconstitution of an essential acyl-CoA carboxylase from Mycobacterium tuberculosis, whose main role appears to be the synthesis of methylmalonyl-CoA. The enzyme complex was reconstituted from the α biotinylated subunit AccA3, the carboxyltransferase β subunit AccD5, and the ε subunit AccE5 (Rv3281). The kinetic properties of this enzyme showed a clear substrate preference for propionyl-CoA compared with acetyl-CoA (specificity constant fivefold higher), indicating that the main physiological role of this enzyme complex is to generate methylmalonyl-CoA for the biosynthesis of branched-chain fatty acids. The α and β subunits are capable of forming a stable α6-β6 subcomplex but with very low specific activity. The addition of the ε subunit, which binds tightly to the α-β subcomplex, is essential for gaining maximal enzyme activity.


Biomolecules ◽  
2021 ◽  
Vol 11 (11) ◽  
pp. 1704
Author(s):  
Je-Seung Jeon ◽  
Desalegn W. Etalo ◽  
Natalia Carreno-Quintero ◽  
Ric C. H. de Vos ◽  
Jos M. Raaijmakers

Genome-wide analysis of plant-growth-promoting Pseudomonas fluorescens strain SS101 (PfSS101) followed by site-directed mutagenesis previously suggested that sulfur assimilation may play an important role in growth promotion and induced systemic resistance in Arabidopsis. Here, we investigated the effects of sulfur metabolism in PfSS101 on growth, defense, and shoot metabolomes of Arabidopsis and the Brassica crop, Broccoli. Root tips of seedlings of Arabidopsis and two Broccoli cultivars were treated with PfSS101 or with a mutant disrupted in the adenylsulfate reductase cysH, a key gene in cysteine and methionine biosynthesis. Phenotyping of plants treated with wild-type PfSS101 or its cysH mutant revealed that sulfur assimilation in PfSS101 was associated with enhanced growth of Arabidopsis but with a reduction in shoot biomass of two Broccoli cultivars. Untargeted metabolomics revealed that cysH-mediated sulfur assimilation in PfSS101 had significant effects on shoot chemistry of Arabidopsis, in particular on chain elongation of aliphatic glucosinolates (GLSs) and on indole metabolites, including camalexin and the growth hormone indole-3-acetic acid. In Broccoli, PfSS101 sulfur assimilation significantly upregulated the relative abundance of several shoot metabolites, in particular, indolic GLSs and phenylpropanoids. These metabolome changes in Broccoli plants coincided with PfSS101-mediated suppression of leaf infections by Xanthomonas campestris. Our study showed the metabolic interconnectedness of plants and their root-associated microbiota.


2020 ◽  
Vol 8 (8) ◽  
pp. 1229
Author(s):  
Herbert J. Santos ◽  
Yoko Chiba ◽  
Takashi Makiuchi ◽  
Saki Arakawa ◽  
Yoshitaka Murakami ◽  
...  

Mitochondrial matrix proteins synthesized in the cytosol often contain amino (N)-terminal targeting sequences (NTSs), or alternately internal targeting sequences (ITSs), which enable them to be properly translocated to the organelle. Such sequences are also required for proteins targeted to mitochondrion-related organelles (MROs) that are present in a few species of anaerobic eukaryotes. Similar to other MROs, the mitosomes of the human intestinal parasite Entamoeba histolytica are highly degenerate, because a majority of the components involved in various processes occurring in the canonical mitochondria are either missing or modified. As of yet, sulfate activation continues to be the only identified role of the relic mitochondria of Entamoeba. Mitosomes influence the parasitic nature of E. histolytica, as the downstream cytosolic products of sulfate activation have been reported to be essential in proliferation and encystation. Here, we investigated the position of the targeting sequence of one of the mitosomal matrix enzymes involved in the sulfate activation pathway, ATP sulfurylase (AS). We confirmed by immunofluorescence assay and subcellular fractionation that hemagluttinin (HA)-tagged EhAS was targeted to mitosomes. However, its ortholog in the δ-proteobacterium Desulfovibrio vulgaris, expressed as DvAS-HA in amoebic trophozoites, indicated cytosolic localization, suggesting a lack of recognizable mitosome targeting sequence in this protein. By expressing chimeric proteins containing swapped sequences between EhAS and DvAS in amoebic cells, we identified the ITSs responsible for mitosome targeting of EhAS. This observation is similar to other parasitic protozoans that harbor MROs, suggesting a convergent feature among various MROs in favoring ITS for the recognition and translocation of targeted proteins.


2019 ◽  
Vol 70 (16) ◽  
pp. 4223-4236 ◽  
Author(s):  
Wilena Telman ◽  
Karl-Josef Dietz

Abstract Sulfur assimilation and sulfur metabolism are tightly controlled at the transcriptional, post-transcriptional, and post-translational levels in order to meet the demand for reduced sulfur in growth and metabolism. These regulatory mechanisms coordinate the cellular sulfhydryl supply with carbon and nitrogen assimilation in particular. Redox homeostasis is an important cellular parameter intimately connected to sulfur by means of multiple thiol modifications. Post-translational thiol modifications such as disulfide formation, sulfenylation, S-nitrosylation, persulfidation, and S-glutathionylation allow for versatile switching and adjustment of protein functions. This review focuses on redox-regulation of enzymes involved in the sulfur assimilation pathway, namely adenosine 5´-phosphosulfate reductase (APR), adenosine 5´-phosphosulfate kinase (APSK), and γ-glutamylcysteine ligase (GCL). The activity of these enzymes is adjusted at the transcriptional and post-translational level depending on physiological requirements and the state of the redox and reactive oxygen species network, which are tightly linked to abiotic stress conditions. Hormone-dependent fine-tuning contributes to regulation of sulfur assimilation. Thus, the link between oxylipin signalling and sulfur assimilation has been substantiated by identification of the so-called COPS module in the chloroplast with its components cyclophilin 20–3, O-acetylserine thiol lyase, 2-cysteine peroxiredoxin, and serine acetyl transferase. We now have a detailed understanding of how regulation enables the fine-tuning of sulfur assimilation under both normal and abiotic stress conditions.


1976 ◽  
Vol 22 (1) ◽  
pp. 109-113 ◽  
Author(s):  
Olli H. Tuovinen ◽  
Bruce C. Kelley ◽  
D. J. Donald Nicholas

Activities of enzymes which mediate the oxidation of thiosulfate to sulfate and the assimilation of sulfate to sulfide were assayed in various cell-free fractions of Thiobacillus ferrooxidans grown autotrophically on either ferrous iron or thiosulfate or heterotrophically on glucose. There was no activity of the thiosulfate-oxidizing enzyme in extracts of bacteria grown with ferrous iron. Comparable activities for ATP-sulfurylase (EC 2.7.7.4), ADP-sulfurylase (EC 2.7.7.5), and adenylate kinase (EC 2.7.4.3) were found in the bacteria grown autotrophically with either Fe2+ or S2O32− or heterotrophically with glucose.


2021 ◽  
Author(s):  
Shong Lau ◽  
Shani Stern ◽  
Sara Linker ◽  
Ioana Da Silva ◽  
Nako Nakatsuka ◽  
...  

Abstract Human aging is the main risk factor for Parkinson’s disease (PD). To better understand age-related PD pathogenesis, we modeled PD with directly reprogrammed dopaminergic neurons (iDA) which preserve donor aging signatures. By transcriptome analysis and immunohistochemistry on postmortem tissues, we identified a sulfurtransferase, TSTD1, to be upregulated in aged and diseased individuals. TSTD1 catalyzes sulfur transfer from thiosulfate to glutathione (GSH). GSH and cysteine were significantly decreased in dopaminergic (DA) neurons with TSTD1 overexpression. Lower intracellular H2S levels and mitochondrial membrane potential (MMP) were identified in aged, PD iDA, and TSTD1 overexpressing embryonic stem cell (ES)-derived DA neurons. TSTD1 overexpression could lead to GAPDH inhibition and energy deficiency in neurons. We hypothesize that TSTD1 upregulation in aged and PD individuals could disrupt sulfur metabolism which compromises anti-oxidant capacity and energy production in neurons; both of these mechanisms have been implicated as triggers for DA neuronal degeneration in PD.


Sign in / Sign up

Export Citation Format

Share Document