On stability and load-bearing capacity of thin-walled composite profiles subjected to eccentric compression

Author(s):  
H. Debski ◽  
S. Samborski
2019 ◽  
Vol 25 (3) ◽  
pp. 287-296 ◽  
Author(s):  
Antanas Šapalas ◽  
Gintas Šaučiuvėnas ◽  
Konstantin Rasiulis ◽  
Mečislovas Griškevičius ◽  
Tomas Gečys

Design of modern thin-walled metal structures is widely used around the world. In recent decades, more comprehensive research is carried out to investigate the behaviour of various thin-walled structures. Generally, the structure with regular geometry is investigated. In various countries such as USA, Russia, and the European Union issued the standards on regulation of the construction, design and maintenance of thin-walled structures. The actually used period of tanks usually is longer than recommendatory period. Recommendatory maintenance period of metal tanks is 15–20 years. Therefore, for such structures one of the most considerable questions is the residual load bearing capacity beyond the end of the maintenance period. This phase of using of structures is associated with complex investigation and numerical analysis of thin-walled structures. In this paper the load bearing capacity of the steel wall of the existing over-ground vertical cylindrical tank in volume of 5,000 m3 with a single defect and with a few contiguous local defects of the shape is analyzed. Calculations carried out are taking into account all the imperfections of the wall geometry. A major goal of the research – developing a realistic numerical model of the object analyzed, taking into account all the imperfections, determining the wall stress and strain state, exploring the places of extreme points, calculating the residual load bearing capacity of the tank and scrutinizing possible strengthening schemes for defective areas.


2018 ◽  
Vol 143 ◽  
pp. 320-330 ◽  
Author(s):  
Bo Yang ◽  
Le Shen ◽  
Shao-Bo Kang ◽  
Mohamed Elchalakani ◽  
Shi-Dong Nie

Materials ◽  
2020 ◽  
Vol 13 (3) ◽  
pp. 795 ◽  
Author(s):  
Fengjie Zhang ◽  
Junwu Xia ◽  
Guo Li ◽  
Zhen Guo ◽  
Hongfei Chang ◽  
...  

This work aimed to investigate the effects of steel tube corrosion on the axial ultimate load-bearing capacity (AULC) of circular thin-walled concrete-filled steel tubular (CFST) members. Circular thin-walled CFST stub column specimens were made of steel tubes with various wall-thicknesses. These CFST column specimens were subjected to an accelerated corrosion test, where the steel tubes were corroded to different degrees of corrosion. Then, these CFST specimens with corroded steel tubes experienced an axial static loading test. Results show that the failure patterns of circular thin-walled CFST stub columns with corroded steel tubes are different from those of the counterpart CFST columns with ordinary wall-thickness steel tubes, which is a typical failure mode of shear bulging with slight local outward buckling. The ultimate strength and plastic deformation capacity of the CFST specimens decreased with the increasing degree of steel corrosion. The failure modes of the specimens still belonged to ductile failure because of the confinement of outer steel tube. The degree of steel tube corrosion, diameter-to-thickness ratio, and confinement coefficient had substantial influences on the AULC and the ultimate compressive strength of circular thin-walled CFST stub columns. A simple AULC prediction model for corroded circular thin-walled CFST stub columns was presented through the regression of the experimental data and parameter analysis.


Author(s):  
D. A. Prostakishina ◽  
◽  
N. D. Korsun ◽  

The article describes the process of numerical simulation of a composite symmetric section element made of thin-walled Sigma profiles operating under conditions of longitudinal compressive force with bending, taking into account the initial geometric imperfections. At numerical modeling, the main criterion of the load-bearing capacity exhaustion in case of eccentric compression is the stability loss in one of the forms. However, for thin-walled elements, the loss of local stability does not mean that the load-bearing capacity is completely exhausted, since the element continues to carry the load, but to a lesser extent. Therefore, simulation was carried out in two stages: initially, in the elastic formulation, the possible buckling modes were determined, afterwards, there was made calculation on the deformed pattern taking into account possible imperfections.


2011 ◽  
Vol 255-260 ◽  
pp. 118-122
Author(s):  
Bin Wang

This paper presents an experimental investigation of the mechanic behavior of 9 concrete-filled square steel tube columns (CFSST) subjected to eccentric loading. The primary parameters of the specimens are eccentricity ratios, slenderness ratios and concrete strength. The results showed that the eccentricity ratios and slenderness ratios are the primary factors to influence the load-bearing capacity of CFSST columns, with the increase of eccentricity ratios and slenderness ratios, the limit load-bearing capacity reduced gradually. The influence of concrete strength to load-bearing capacity decreased gradually with the increase of eccentricity ratios and slenderness ratios.


2014 ◽  
Vol 20 (3) ◽  
pp. 372-379 ◽  
Author(s):  
Ryszard Antonowicz ◽  
Czesław Bywalski ◽  
Mieczysław Kaminski

This paper deals with problems connected with the design and operation of thin-walled steel silos for storing pelleted materials. A failure of a faultily designed silo is described and its causes are examined. The parameters of the stored material were determined. The exceptional (unforeseen) loads produced by arching and their consequences were analysed. In order to compare the effect of calculation assumptions on the degree of use of the load-bearing capacity of the stringer its buckling capacity under the stored material load alone was checked. On the basis of the analyses the probable course of the events leading to the failure was determined. It is pointed out that the exceptional loads and the disturbance of the bulk material flow by silo structural and technological fittings need to be taken into account in the design of silos.


2018 ◽  
Vol 196 ◽  
pp. 01008 ◽  
Author(s):  
Vadim Alpatov ◽  
Alexey Soloviev

There is a tendency to reduce weight of load-bearing metal structures being developed and successfully realized in modern building construction. This idea serves as a basis for a whole scientific direction, named Development and application of light steel thin-walled structures (LSTS). Among them, LTST built with pop-rivets and thread-cutting screws are most widespread due to their simplicity and relative cheapness This paper presents numerical studies of LSTS joint assembly units built with screws and their load bearing capacity. The peculiarity of these units consists in misalignment of joint elements. The calculation was performed in the SolidWorks Simulation System. The modeled node is a three-dimensional assembly consisting of solid components. The results of the study are as follows: 1) thin-walled profiles have a significant sensitivity to eccentricity; 2) it is unacceptable to disregard eccentricities for thin-walled profiles and their joint connections; 3) eccentricities should be compensated by measures to improve reliability in joint connections design.


2012 ◽  
Vol 446-449 ◽  
pp. 311-317
Author(s):  
Ji Zhong Wang ◽  
Yong Feng Wang ◽  
Su Yan Wang

This paper compares three standards of FRP strengthened concrete columns published by ACI committee, Concrete Society and China respectively. A test is designed according to the comparison. A total of five columns were cast and tested. The analysis of the load bearing capacity and ductility of the test result indicates that wrapping hoop GFRP can enhance load bearing capacity slightly and the ductility greatly, wrapping axial GFRP can enhance load bearing capacity greatly but the failure of column is brittle, wrapping axial GFRP over-wrapped with hoop GFRP can both enhance load bearing capacity and the ductility.


Sign in / Sign up

Export Citation Format

Share Document