Blue Carbon Accounting for Carbon Markets

2018 ◽  
pp. 283-292
Author(s):  
Brian A. Needelman ◽  
Igino M. Emmer ◽  
Matthew P. J. Oreska ◽  
J. Patrick Megonigal
2022 ◽  
Author(s):  
Catherine E. Lovelock ◽  
M. Fernanda Adame ◽  
Don W. Butler ◽  
Jeffrey J. Kelleway ◽  
Sabine Dittmann ◽  
...  

2022 ◽  
Vol 4 ◽  
Author(s):  
Clare Duncan ◽  
Jurgenne H. Primavera ◽  
Nicholas A. O. Hill ◽  
Dominic C. J. Wodehouse ◽  
Heather J. Koldewey

Opportunities to boost climate change mitigation and adaptation (CCMA) and sustainable conservation financing may lie in enhancing blue carbon sequestration, particularly in developing nations where coastal ecosystems are extensive and international carbon markets offer comparatively attractive payments for environmental stewardship. While blue carbon is receiving increased global attention, few credit-generating projects are operational, due to low credit-buyer incentives with uncertainty in creditable emissions reductions and high project costs. Little empirical guidance exists for practitioners to quantify return-on-investment (ROI) and viability of potential projects, particularly for rehabilitation where multiple implementation options exist with diverse associated costs. We map and model drivers of mangrove natural regeneration (NR) using remote sensing (high-resolution satellite imagery segmentation and time-series modeling), and subsequent carbon sequestration using field- and literature-derived data, across abandoned aquaculture ponds in the Philippines. Using project-specific cost data, we then assess ROI for a hypothetical rehabilitation-focused mangrove blue carbon project at a 9.68 ha abandoned pond over a 10-year timeframe, under varied rehabilitation scenarios [NR vs. assisted natural regeneration (ANR) with planting], potential emissions reduction accreditation methodologies, carbon prices and discount rates. NR was faster in lower-lying ponds with lower tidal exposure (greater pond dike retention). Forecasted carbon sequestration was 3.7- to 5.2-fold and areal “greenbelt” regeneration 2.5- to 3.4-fold greater in our case study under ANR than NR. Variability in modeled sequestration rates drove high uncertainty and credit deductions in NR strategies. ROI with biomass-only accreditation was low and negative under NR and ANR, respectively. ROI was greater under ANR with inclusion of biomass and autochthonous soil carbon; however, neither strategy was highly profitable at current voluntary market carbon prices. ANR was the only scenario that fulfilled coastal protection greenbelt potential, with full mangrove cover within 10 years. Our findings highlight the benefits of ANR and soils inclusion in rehabilitation-oriented blue carbon projects, to maximize carbon sequestration and greenbelt enhancement (thus enhance pricing with potential bundled credits), and minimize forecasting uncertainty and credit-buyers’ perceived risk. An ANR rehabilitation strategy in low-lying, sea-facing abandoned ponds with low biophysical intervention costs may represent large blue carbon CCMA opportunities in regions with high aquaculture abandonment.


2022 ◽  
Author(s):  
Eduardo Entrena Barbero ◽  
Gumersindo Feijoo ◽  
Sara González-García ◽  
María Teresa Moreira

2017 ◽  
Vol 2 (6) ◽  
pp. 195-201 ◽  
Author(s):  
Peter I. Macreadie ◽  
Oscar Serrano ◽  
Damien T. Maher ◽  
Carlos M. Duarte ◽  
John Beardall

2021 ◽  
Vol 73 (09) ◽  
pp. 6-6
Author(s):  
Pam Boschee

Purchasing carbon offsets is a widespread means of attempting to meet carbon-reduction and net-zero emissions goals across many industries. Also widespread is the increasing scrutiny of the practice. How “real” are the offsets? How are they quantified and verified, and by whom? Purchasing carbon offsets, or carbon credits, is an option when a company’s efforts to eliminate its carbon emissions through mitigation methods fall short. The offsets are purchased through investments in projects that remove carbon from the atmosphere such as nature-based solutions (e.g., REDD, or reducing emissions from deforestation and forest degradation), negative-emission technologies (including carbon capture and storage [CCS] and bioenergy with CCS), and renewable energy. Here’s where the criticism arises: How is the amount of carbon captured by these projects measured? For example, how much carbon can a tree or forest handle? Are all trees equal in their carbon intake? The uncertainty and variability in carbon-accumulation rates is acknowledged in research studies that are attempting to provide quantification. A study published in Nature compiled more than 13,000 georeferenced measurements to determine the rates for the first 30 years of natural forest regrowth. A map showed more than 100-fold variation in rates across the globe and indicated that default rates from the Intergovernmental Panel on Climate Change may underestimate the rates by 32% on average and do not capture eightfold variation within ecozones. On the other hand, the study concluded that the maximum mitigation potential from natural forest regrowth is 11% lower than previously reported because of the use of overly high rates for locations of potential new forest. While the study was not intended to provide verification to be used in the carbon-offset market, it points to the difficulty in getting the numbers right. Third-party verifiers are casting light on the validity of offsets. Various organizations such as the Climate Registry and the American Carbon Registry (ACR) aim to set standards and best practices. In both the regulated and voluntary carbon markets, ACR says it “oversees the registration and verification of carbon-offset projects following approved carbon accounting methodologies or protocols and issues offsets on a transparent registry system.” In July, CarbonPlan, a nonprofit that analyzes climate solutions based on the best available science and data, rated BCarbon, a standard created by Rice University’s Baker Institute for Public Policy, as one of the best publicly available protocols for soil carbon offsets in the US. BCarbon, a nature-based mitigation system, aims to remove CO2 from the atmosphere and store it in soil as organic carbon. Based on independent verification and certification requirements, the credits under the system are issued for the removal of CO2 by photosynthesis and storage as carbon in soil. Landowners are eligible for storage payments. The Baker Institute said the approach could unlock the potential for removal, storage, and certification of upwards of 1 billion tons of CO2 and lead to the protection and restoration of hundreds of millions of acres of grassland. Scrutiny of carbon offsets is beneficial in this expanding carbon market. Verification and certification will serve to increase the trust of both buyers and sellers—and the public—in what will likely be a bridge toward longer-term solutions to reduce global carbon emissions. And getting the numbers right is essential.


Jurnal Segara ◽  
2015 ◽  
Vol 10 (2) ◽  
Author(s):  
Agustin Rustam ◽  
Terry L. Kepel ◽  
Restu Nur Afiati ◽  
Hadiwijaya L. Salim ◽  
Mariska Astrid ◽  
...  
Keyword(s):  

2015 ◽  
Author(s):  
Christopher W. Woodall ◽  
John W. Coulston ◽  
Grant M. Domke ◽  
Brian F. Walters ◽  
David N. Wear ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document