Ocean Climate Changes

Author(s):  
Donat-P. Häder ◽  
KunshanGao
Author(s):  
Jiangbo Jin ◽  
He Zhang ◽  
Xiao Dong ◽  
Hailong Liu ◽  
Minghua Zhang ◽  
...  

AbstractThe second version of the Chinese Academy of Sciences Earth System Model (CAS-ESM2.0) is participating in the Flux-Anomaly-Forced Model Intercomparison Project (FAFMIP) experiments in phase 6 of the Coupled Model Intercomparison Project (CMIP6). The purpose of FAFMIP is to understand and reduce the uncertainty of ocean climate changes in response to increased CO2 forcing in atmosphere-ocean general circulation models (AOGCMs), including the simulations of ocean heat content (OHC) change, ocean circulation change, and sea level rise due to thermal expansion. FAFMIP experiments (including faf-heat, faf-stress, faf-water, faf-all, faf-passiveheat, faf-heat-NA50pct and faf-heat-NA0ct) have been conducted. All of the experiments were integrated over a 70-year period and the corresponding data have been uploaded to the Earth System Grid Federation data server for CMIP6 users to download. This paper describes the experimental design and model datasets and evaluates the preliminary results of CAS-ESM2.0 simulations of ocean climate changes in the FAFMIP experiments. The simulations of the changes in global ocean temperature, Atlantic Meridional Overturning Circulation (AMOC), OHC., and dynamic sea level (DSL), are all reasonably reproduced.


Author(s):  
LUC ORTLIEB ◽  
RUBEN ESCRIBANO ◽  
RENZO FOLLEGATI ◽  
OSCAR ZUÑIGA ◽  
ISMAEL KONG ◽  
...  

Larval growth and settlement rates are important larval behaviors for larval protections. The variability of larval growthsettlement rates and physical conditions for 2006-2012 and in the future with potential climate changes was studied using the coupling ROMS-IMBs, and new temperature and current indexes. Forty-four experimental cases were conducted for larval growth patterns and release mechanisms, showing the spatial, seasonal, annual, and climatic variations of larval growthsettlement rates and physical conditions, demonstrating that the slight different larval temperature-adaption and larval release strategies made difference in larval growth-settlement rates, and displaying that larval growth and settlement rates highly depended upon physical conditions and were vulnerable to climate changes.


2017 ◽  
Vol 23 (1) ◽  
Author(s):  
V.K. YADAV ◽  
SONAM SHARMA ◽  
A.K. SRIVASTAVA ◽  
P.K. KHARE

Ponds are an important fresh water critical ecosystem for plants and animals providing goods and services including food, fodder, fish, irrigation, hydrological cycle, shelter, medicine, culture, aesthetic and recreation. Ponds cover less than 2 percent of worlds land surface. Ponds are important source of fresh water for human use. These are threatened by urbanization, industrialization, over exploitation, fragmentation, habitat destruction, pollution, illegal capturing of land and climate changes. These above factors have been destroying ponds very rapidly putting them in danger of extinction of a great number of local biodiversity. It is necessary to formulate a correct conservation strategy for pond restoration in order to meet the growing needs of fresh water by increasing the human population. Some measures have been compiled and proposed in the present review.


Sign in / Sign up

Export Citation Format

Share Document