Split Torque Transmission Systems

2018 ◽  
pp. 697-724
Author(s):  
Stephen P. Radzevich
1982 ◽  
Vol 196 (1) ◽  
pp. 11-22 ◽  
Author(s):  
G White

A simple split-torque gear train is used as the main rotor transmission of a single-engine helicopter. Overall speed reduction ratio achieved is 103:1 between the engine at a nominal 36 000 rev/min and the main rotor at 350 rev/min. This ratio is generated from three stages of fixed-axis gear trains containing only eight gears. Alternative configurations are outlined and discussed. Comparison with a current production design shows the split torque arrangement offers reductions in weight, height, and drive train losses. A low total of gears and bearings offers the potential for improved reliability.


2013 ◽  
Vol 5 (12) ◽  
pp. 3386-3392 ◽  
Author(s):  
Ruifeng Wang ◽  
Ning Zhao ◽  
Li Tao ◽  
Qingjian Jia ◽  
Hui Guo

2012 ◽  
Vol 490-495 ◽  
pp. 2231-2235 ◽  
Author(s):  
Ning Zhao ◽  
Rui Feng Wang ◽  
Li Tao ◽  
Qing Jian Jia

Parallel shaft split torque Transmission system Split torque Load sharing Abstract: The Newton method was applied to develop a system of equations of motion, the mathematical model includes stiffness of shaft supporting, position of gears, backlashes, time-varying stiffness, composite transmission errors, damping. The model was solved by variable step size forth/fifth-order Runge-Kutta method. The load sharing was affected obviously by asymmetry of gear backlashes, stiffness of shaft supporting and gear position


2015 ◽  
Vol 813-814 ◽  
pp. 959-963
Author(s):  
Kalathur Kumar ◽  
S. Arul

Literature reported extensive work on the failure of Industrial power transmission systems, during their routine torque transmission, rotary motion etc. During transmission through gear drive the noise, temperature, stresses, vibration etc are important factors to be considered. When one or more of above exceed certain design limits, the drive and its accessories must be examined for the cause and a preventive maintenance is to be followed. The latest research work carried out, in above area is reviewed. The cause of failure and failure analysis is examined. An attempt is made in this paper, to systematically analyze the modes of failures, the reasons for the same, issues and challenges involved, there in, and measures to be taken for addressing them. This analysis is likely to help the researchers to proceed further in analyzing the failure and to suggest means to prevent failure of gear power transmission systems. The major contribution of present work is, to present the common modes of failure of gear teeth in power transmission systems, and measures to be taken to address the same. In general various additives in the lubricating oil help in controlling initiation of pitting. The present work involves controlling one of the additives namely sulphur in the lubricating oil to control pitting. The present work forms an excellent basis for identifying various other parameters affecting the pitting failure of gear teeth in a gear box.


2012 ◽  
Vol 246-247 ◽  
pp. 78-83
Author(s):  
Rui Feng Wang ◽  
Ning Zhao ◽  
Qing Jian Jia ◽  
Li Tao

A calculative model for parallel shaft split torque transmission system is presented, the model includes stiffness of shaft supporting, time-varying stiffness, damping, gear eccentric error errors, bearing eccentric errors, gear tooth thickness error, assembly error. Dynamic analytic model is built using the theory of equivalent mesh error and Newton method. The model was solved by variable step size forth/fifth-order Runge-Kutta method. The result shown all error affect load sharing in different way, one error deduced sharply can not improve load sharing obviously.


Sign in / Sign up

Export Citation Format

Share Document