A Lightweight Split-Torque Transmission for a 330 KW Helicopter

1982 ◽  
Vol 196 (1) ◽  
pp. 11-22 ◽  
Author(s):  
G White

A simple split-torque gear train is used as the main rotor transmission of a single-engine helicopter. Overall speed reduction ratio achieved is 103:1 between the engine at a nominal 36 000 rev/min and the main rotor at 350 rev/min. This ratio is generated from three stages of fixed-axis gear trains containing only eight gears. Alternative configurations are outlined and discussed. Comparison with a current production design shows the split torque arrangement offers reductions in weight, height, and drive train losses. A low total of gears and bearings offers the potential for improved reliability.

1969 ◽  
Vol 11 (2) ◽  
pp. 143-150 ◽  
Author(s):  
D. J. Sanger ◽  
G. White

It is shown that six-speed gear trains with the minimum number of gears, i.e. eight gears, can be divided into categories which are suitable for overdrive ratios or speed reduction ratios. One gear train from each category is examined and its characteristics and design limits discussed. A technique for computing solutions is outlined and a few typical solutions are given.


2002 ◽  
Vol 124 (4) ◽  
pp. 662-675 ◽  
Author(s):  
V. V. N. R. Prasad Raju Pathapati ◽  
A. C. Rao

The most important step in the structural synthesis of planetary gear trains (PGTs) requires the identification of isomorphism (rotational as well as displacement) between the graphs which represent the kinematic structure of planetary gear train. Previously used methods for identifying graph isomorphism yielded incorrect results. Literature review in this area shows there is inconsistency in results from six link, one degree-of-freedom onwards. The purpose of this paper is to present an efficient methodology through the use of Loop concept and Hamming number concept to detect displacement and rotational isomorphism in PGTs in an unambiguous way. New invariants for rotational graphs and displacement graphs called geared chain hamming strings and geared chain loop hamming strings are developed respectively to identify rotational and displacement isomorphism. This paper also presents a procedure to redraw conventional graph representation that not only clarifies the kinematic structure of a PGT but also averts the problem of pseudo isomorphism. Finally a thorough analysis of existing methods is carried out using the proposed technique and the results in the category of six links one degree-of-freedom are established and an Atlas comprises of graph representations in conventional form as well as in new form is presented.


2017 ◽  
Vol 139 (6) ◽  
Author(s):  
Vinjamuri Venkata Kamesh ◽  
Kuchibhotla Mallikarjuna Rao ◽  
Annambhotla Balaji Srinivasa Rao

Epicyclic gear trains (EGTs) are used in the mechanical energy transmission systems where high velocity ratios are needed in a compact space. It is necessary to eliminate duplicate structures in the initial stages of enumeration. In this paper, a novel and simple method is proposed using a parameter, Vertex Incidence Polynomial (VIP), to synthesize epicyclic gear trains up to six links eliminating all isomorphic gear trains. Each epicyclic gear train is represented as a graph by denoting gear pair with thick line and transfer pair with thin line. All the permissible graphs of epicyclic gear trains from the fundamental principles are generated by the recursive method. Isomorphic graphs are identified by calculating VIP. Another parameter “Rotation Index” (RI) is proposed to detect rotational isomorphism. It is found that there are six nonisomorphic rotation graphs for five-link one degree-of-freedom (1-DOF) and 26 graphs for six-link 1-DOF EGTs from which all the nonisomorphic displacement graphs can be derived by adding the transfer vertices for each combination. The proposed method proved to be successful in clustering all the isomorphic structures into a group, which in turn checked for rotational isomorphism. This method is very easy to understand and allows performing isomorphism test in epicyclic gear trains.


2005 ◽  
Vol 127 (3) ◽  
pp. 415-423 ◽  
Author(s):  
C.-P. Teng ◽  
J. Angeles

Methods of structural optimization have been studied and developed over the last three decades. An important aspect of structural optimization pertains to the condition under which the loads are applied. Most machine structures in operation are subject to loads varying as functions of time. In this paper, a novel approach is proposed to cope with loads whose magnitudes vary within given bounds and with variable directions. The underlying ideas are applied to the structural optimization of the roller-carrying disk of a novel class of cam-follower speed reduction devices termed Speed-o-Cam (SoC). Results obtained in this paper are compared with a current prototype and with an intermediate design in which the dimensions of the roller pins are optimized. Combined with the optimum dimension of the roller pins, our structural-optimization results lead to an improvement of almost twice the stiffness with a mass reduction of 40% of the original prototype.


2016 ◽  
Vol 138 (8) ◽  
Author(s):  
Essam Lauibi Esmail

The concept of potential power efficiency is introduced as the efficiency of an epicyclic gear train (EGT) measured in any moving reference frame. The conventional efficiency can be computed in a carrier-moving reference frame in which the gear carrier appears relatively fixed. In principle, by attaching the reference frame to an appropriate link, torques can be calculated with respect to each input, output, or (relatively) fixed link in the EGT. Once the power flow direction is obtained from the potential power ratio, the torque ratios are obtained from the potential power efficiencies, the particular expression of the efficiency of the EGT is found in a simple manner. A systematic methodology for the efficiency analysis of one and two degree-of-freedom (DOF) EGTs is described, and 14 ready-to-use efficiency formulas are derived for 2DOF gear pair entities (GPEs). This paper includes also a discussion on the redundancy of the efficiency formulas used for 1DOF GPEs. An incomplete in the efficiency formulas in previous literature, which make them susceptible to wrong application, is brought to light.


2018 ◽  
Vol 62 (1-4) ◽  
pp. 351-355 ◽  
Author(s):  
M. Keenan ◽  
J. Nicole ◽  
D. Poojary

1994 ◽  
Vol 116 (1) ◽  
pp. 326-331 ◽  
Author(s):  
R. Ma ◽  
K. C. Gupta

Signal flow graphs (SFG) have been applied in many areas such as circuit analysis, controls, mechanical vibrations, statistics, and operations research. They have also been applied to the analysis of planetary gear trains which are planar, i.e., where all of the gear axes are parallel. In this paper, signal flow graphs are applied to spatial planetary gear trains. Some additional terminology and rules which are needed for this important application are developed in this paper and illustrated by examples. The significance of applying SFG to a gear system is that the graph describes the interrelationship among the system variables by linking causes and effects, offers the information about the topology of system connection, and the kinematic equations of motion can be written easily by inspection. In this way, it helps use to visualize and understand spatial gear train systems better.


1994 ◽  
Vol 116 (2) ◽  
pp. 565-570 ◽  
Author(s):  
Hong-Sen Yan ◽  
Long-Chang Hsieh

An automotive gear differential is a joint-fractionated planetary gear train with two degrees-of-freedom. We summarize the characteristics of planetary gear trains and the design constraints of noncoupled automotive gear differentials to synthesize their corresponding kinematic graphs. Based on these graphs and the proposed respecializing process, we generate the atlas of design concepts for automotive gear differentials with any types of gear pairs. As a result, there are 4, 25, and 156 design concepts for five-, six-, and seven-bar automotive gear differentials, respectively.


2018 ◽  
Vol 175 ◽  
pp. 03006
Author(s):  
Mingxia Zhao

Taking the compound gear trains as an example, the principle of the transmission mechanism was analyzed, and the rotational speed of the key gears in the compound gear trains was calculated by using the calculation formula of transmission ratio to obtain the simulation parameters of UG movement. The gear tool box in UG was applied to complete the modeling and meshing assembly of the bevel gear and spur gear, the rotation pair and gear pair was to motion simulation, the gear transmission state could have visually observed by motion simulation, and then the chart was analyzed to verify the design rationality of the gear train.


Sign in / Sign up

Export Citation Format

Share Document