Effects of neighborhood tree species diversity on soil organic carbon and labile carbon in subtropical forest

Author(s):  
S. Sun ◽  
X. Song ◽  
Y. He ◽  
Q. Qian ◽  
Y. Yao ◽  
...  
2017 ◽  
Vol 10 (1) ◽  
pp. 28-35 ◽  
Author(s):  
Yuanyuan Huang ◽  
Yinlei Ma ◽  
Ke Zhao ◽  
Pascal A. Niklaus ◽  
Bernhard Schmid ◽  
...  

2019 ◽  
pp. 1-11
Author(s):  
Md. Delwar Hossain ◽  
Md. Ehsanul Haq ◽  
Manna Salwa ◽  
Md. Nazmul Islam Shekh ◽  
Aisha Siddika ◽  
...  

The study was conducted from January to April 2018 to estimate ecosystem carbon stock and tree species diversity at National Botanical Garden, Bangladesh. Transects line method square plots with a size of 20 m × 20 m were used. So altogether there were total eighty-three sample plots in National Botanical Garden. Above ground carbon (AGC) and below ground carbon (BGC) biomass stock was 192.67 and 31.34, respectively and soil organic carbon mean value of 27.52 Mg ha-1, 21.45 Mg ha-1 and 16.23 Mg ha-1, respectively for 0-10 cm depth, 10-20 cm and 20-30 cm depth. The average number of tree species per hectare was 128 with a mean value of each plot 3.00 to 9.00 species. The average number of trees in National Botanical Garden (233 tree ha-1), basal area (21.45 m2 ha-1) and mean DBH (39.86 cm). Tree diversity range from 0.25 to 1.86 and the mean value of (0.93 ± 0.14) in National Botanical Garden. A relationship such as biomass carbon with the basal area, mean DBH, stem density and tree diversity were estimated. Among these, the relationship between basal area and biomass carbon showed positive significant correlation. Therefore, the results of the study confirmed that the selected botanical garden can serve as a valuable ecological tool in terms of carbon sequestration, diverse tree species and storage of soil organic carbon.


2021 ◽  
Vol 14 ◽  
pp. 194008292199541
Author(s):  
Xavier Haro-Carrión ◽  
Bette Loiselle ◽  
Francis E. Putz

Tropical dry forests (TDF) are highly threatened ecosystems that are often fragmented due to land-cover change. Using plot inventories, we analyzed tree species diversity, community composition and aboveground biomass patterns across mature (MF) and secondary forests of about 25 years since cattle ranching ceased (SF), 10–20-year-old plantations (PL), and pastures in a TDF landscape in Ecuador. Tree diversity was highest in MF followed by SF, pastures and PL, but many endemic and endangered species occurred in both MF and SF, which demonstrates the importance of SF for species conservation. Stem density was higher in PL, followed by SF, MF and pastures. Community composition differed between MF and SF due to the presence of different specialist species. Some SF specialists also occurred in pastures, and all species found in pastures were also recorded in SF indicating a resemblance between these two land-cover types even after 25 years of succession. Aboveground biomass was highest in MF, but SF and Tectona grandis PL exhibited similar numbers followed by Schizolobium parahyba PL, Ochroma pyramidale PL and pastures. These findings indicate that although species-poor, some PL equal or surpass SF in aboveground biomass, which highlights the critical importance of incorporating biodiversity, among other ecosystem services, to carbon sequestration initiatives. This research contributes to understanding biodiversity conservation across a mosaic of land-cover types in a TDF landscape.


2021 ◽  
Vol 13 (3) ◽  
pp. 1541
Author(s):  
Xiaolin Shen ◽  
Lili Wang ◽  
Qichen Yang ◽  
Weiming Xiu ◽  
Gang Li ◽  
...  

Our study aimed to provide a scientific basis for an appropriate tillage management of wheat-maize rotation system, which is beneficial to the sustainable development of agriculture in the fluvo-aquic soil areas in China. Four tillage treatments were investigated after maize harvest, including rotary tillage with straw returning (RT), deep ploughing with straw returning (DP), subsoiling with straw returning (SS), and no tillage with straw mulching (NT). We evaluated soil organic carbon (SOC), dissolved organic carbon (DOC), permanganate oxidizable carbon (POXC), microbial biomass carbon (MBC), and particulate organic carbon (POC) in bulk soil and soil aggregates with five particle sizes (>5 mm, 5–2 mm, 2–1 mm, 1–0.25 mm, and <0.25 mm) under different tillage managements. Results showed that compared with RT treatment, NT treatment not only increased soil aggregate stability, but also enhanced SOC, DOC, and POC contents, especially those in large size macroaggregates. DP treatment also showed positive effects on soil aggregate stability and labile carbon fractions (DOC and POXC). Consequently, we suggest that no tillage or deep ploughing, rather than rotary tillage, could be better tillage management considering carbon storage. Meanwhile, we implied that mass fractal dimension (Dm) and POXC could be effective indicators of soil quality, as affected by tillage managements.


Sign in / Sign up

Export Citation Format

Share Document