Mix design and linear viscoelastic characterization of Fine Aggregate Matrix (FAM)

Author(s):  
C. Pratelli ◽  
P. Leandri ◽  
M. Losa ◽  
M. P. Wistuba
Cerâmica ◽  
2017 ◽  
Vol 63 (368) ◽  
pp. 530-535
Author(s):  
Z. L. M. Sampaio ◽  
A. E. Martinelli ◽  
T. S. Gomes

Abstract The recent increase in the construction industry has transformed concrete into an ideal choice to recycle a number of residues formerly discarded into the environment. Among various products, porcelain tile polishing, limestone and tire rubber residues are potential candidates to replace the fine aggregate of conventional mixtures. The aim of this study was to investigate the effect of the addition of varying contents of these residues in lightweight concrete where expanded clay replaced gravel. To that end, slump, compressive strength, density, void ratio, porosity and absorption tests were carried out. The densities of all concrete formulations studied were 10% lower to that of lightweight concrete (<1.850 kg/m³). Nevertheless, mixes containing 10 to 15% of combined residues reduced absorption, void ratio and porosity, at least 17% lower compared to conventional concrete. The strength of such formulations reached 27 MPa at 28 days with consistency of 9 to 12 cm, indicating adequate consistency and increased strength. In addition, the combination of low porosity, absorption and voids suggested improved durability.


2017 ◽  
Vol 23 (10) ◽  
pp. 1377-1388 ◽  
Author(s):  
Seyyed Abbas Mohammadi ◽  
Heinrich Voss

This paper proposes a new approach for computing the real eigenvalues of a multiple-degrees-of-freedom viscoelastic system in which we assume an exponentially decaying damping. The free-motion equations lead to a nonlinear eigenvalue problem. If the system matrices are symmetric, the eigenvalues allow for a variational characterization of maxmin type, and the eigenvalues and eigenvectors can be determined very efficiently by the safeguarded iteration, which converges quadratically and, for extreme eigenvalues, monotonically. Numerical methods demonstrate the performance and the reliability of the approach. The method succeeds where some current approaches, with restrictive physical assumptions, fail.


Author(s):  
Sannmit Shinde ◽  
Ali P. Gordon ◽  
Zachary Poust ◽  
Steve Pitolaj ◽  
Jim Drago ◽  
...  

Pressurized vessels that transfer media from one location to another often contain a bolted connection. Gaskets are essential for these systems since they confer high levels of leak mitigation across of range of operating environments (i.e., internal pressure and temperature). The balance of both sealability and compressibility must be displayed in candidate gasket materials to be subjected to aggressive operating conditions. Historically, thin gauge gasket (i.e., 1/16” thick) confer high sealability while thick gaskets offer superior compressibility (i.e., 1/8”). Fabricated with skive cut, ceramic particle-reinforced PTFE, these materials display linear viscoelastic behavior that allow consolidation to occur. For example, GYLON® 3504 is filled with Aluminosilicate Microspheres, GYLON®3510 is filled with barium sulfate, respectively, to efficiently fill crevices along the surfaces of the flange. Novel textured PTFE gasket (3504 EPX and 3510 EPX) have been developed to simultaneously confer sealability and compressibility compared to flat products. A design of experiments (DoE) approach is applied to characterize the factors that influence load relaxation responses of the both candidate textured PTFE (dual-face honeycomb) and existing (flat) gasket styles. Using an instrumented test platform analyzed. A new parameter is presented to quantify gasket efficiency. The collection of efficiency measurement methods and approach to re-torque optimization convey a novel framework that designers can invoke to facilitate improved flange performance.


Sign in / Sign up

Export Citation Format

Share Document