Applications in String Theory and Quantum Field Theory

2020 ◽  
pp. 71-80
Author(s):  
Khodakhast Bibak
2003 ◽  
Vol 18 (12) ◽  
pp. 2011-2022 ◽  
Author(s):  
N. G. Sanchez

A synthetic report of the advances in the study of classical and quantum string dynamics in curved backgrounds is provided, namely : the new feature of Multistring solutions; the mass spectrum of Strings in Curved backgrounds; The effect of a Cosmological Constant and of Spacial Curvature on Classical and Quantum Strings; Classical splitting of Fundamental Strings; The General String Evolution in constant Curvature Spacetimes; The Conformal Invariance Effects; Strings on plane fronted and gravitational shock waves, string falling on spacetime singularities and its spectrum. New Developments in String Gravity and String Cosmology are reported: String driven cosmology and its Predictions; The primordial gravitational wave background; Non-singular string cosmologies from Exact Conformal Field Theories; Quantum Field Theory, String Temperature and the String Phase of de Sitter space-time; Hawking Radiation in String Theory and the String Phase of Black Holes; New Dual Relation between Quantum Field Theory regime and String regime and the "QFT/String Tango"; New Coherent String States and Minimal Uncertainty Principle in string theory.


1998 ◽  
Author(s):  
Luis Álvarez-Gaumé ◽  
Frederic Zamora

2013 ◽  
Vol 28 (35) ◽  
pp. 1350163 ◽  
Author(s):  
SERGIO GIARDINO ◽  
PAULO TEOTÔNIO-SOBRINHO

A nonassociative Groenewold–Moyal (GM) plane is constructed using quaternion-valued function algebras. The symmetrized multiparticle states, the scalar product, the annihilation/creation algebra and the formulation in terms of a Hopf algebra are also developed. Nonassociative quantum algebras in terms of position and momentum operators are given as the simplest examples of a framework whose applications may involve string theory and nonlinear quantum field theory.


1993 ◽  
Vol 08 (30) ◽  
pp. 5409-5440
Author(s):  
MÅNS HENNINGSON

We initiate a program to study the relationship between the target space, the spectrum and the scattering amplitudes in string theory. We consider scattering amplitudes following from string theory and quantum field theory on a curved target space, which is taken to be the SU(2) group manifold, with special attention given to the duality between contributions from different channels. We give a simple example of the equivalence between amplitudes coming from string theory and quantum field theory, and compute the general form of a four-scalar field-theoretical amplitude. The corresponding string theory calculation is performed for a special case, and we discuss how more general string theory amplitudes could be evaluated.


10.37236/930 ◽  
2007 ◽  
Vol 14 (1) ◽  
Author(s):  
Terry I. Visentin ◽  
Susana W. Wieler

There are many applications of the enumeration of maps in surfaces to other areas of mathematics and the physical sciences. In particular, in quantum field theory and string theory, there are many examples of occasions where it is necessary to sum over all the Feynman graphs of a certain type. In a recent paper of Constable et al. on pp-wave string interactions, they must sum over a class of Feynman graphs which are equivalent to what we call $(p,q,n)$-dipoles. In this paper we perform a combinatorial analysis that gives an exact formula for the number of $(p,q,n)$-dipoles in the torus (genus 1) and double torus (genus 2).


2014 ◽  
Vol 23 (12) ◽  
pp. 1442023 ◽  
Author(s):  
Rodolfo Gambini ◽  
Jorge Pullin

We consider a quantum field theory on a spherically symmetric quantum spacetime described by loop quantum gravity. The spin network description of spacetime in such a theory leads to equations for the quantum field that are discrete. We show that to avoid significant violations of Lorentz invariance, one needs to consider specific nonlocal interactions in the quantum field theory similar to those that appear in string theory. This is the first sign that loop quantum gravity places restrictions on the type of matter considered, and points to a connection with string theory physics.


Sign in / Sign up

Export Citation Format

Share Document