Diagnostic of the Malarial Parasite in RBC Images for Automated Diseases Prediction

2020 ◽  
pp. 269-278
Author(s):  
Karanjot Singh ◽  
Sudhriti Sengupta
Keyword(s):  
2010 ◽  
Vol 80 (45) ◽  
pp. 279-292 ◽  
Author(s):  
Richard Hurrell

Febrile malaria and asymptomatic malaria parasitemia substantially decrease iron absorption in single-meal, stable isotope studies in women and children, but to date there is no evidence of decreased efficacy of iron-fortified foods in malaria-endemic regions. Without inadequate malarial surveillance or health care, giving iron supplements to children in areas of high transmission could increase morbidity and mortality. The most likely explanation is the appearance of non-transferrin-bound iron (NTBI) in the plasma. NTBI forms when the rate of iron influx into the plasma exceeds the rate of iron binding to transferrin. Two studies in women have reported substantially increased NTBI with the ingestion of iron supplements. Our studies confirm this, but found no significant increase in NTBI on consumption of iron-fortified food. It seems likely that the malarial parasite in hepatocytes can utilize NTBI, but it cannot do so in infected erythrocytes. NTBI however may increase the sequestration of parasite-infected erythrocytes in capillaries. Bacteremia is common in children with severe malaria and sequestration in villi capillaries could lead to a breaching of the intestinal barrier, allowing the passage of pathogenic bacteria into the systemic circulation. This is especially important as frequent high iron doses increase the number of pathogens in the intestine at the expense of the barrier bacteria.


Blood ◽  
1997 ◽  
Vol 89 (3) ◽  
pp. 1058-1067 ◽  
Author(s):  
P.J. Nielsen ◽  
B. Lorenz ◽  
A.M. Müller ◽  
R.H. Wenger ◽  
F. Brombacher ◽  
...  

Abstract The heat stable antigen (HSA, or murine CD24) is a glycosyl phosphatidylinositol-linked surface glycoprotein expressed on immature cells of most, if not all, major hematopoietic lineages, as well as in developing neural and epithelial cells. It has been widely used to stage the maturation of B and T lymphocytes because it is strongly induced and then repressed again during their maturation. Terminally differentiated lymphocytes, as well as most myeloid lineages, are negative for HSA. Erythrocytes are an exception in that they maintain high levels of HSA expression. HSA on naive B cells has been shown to mediate cell-cell adhesion, while HSA on antigen-presenting cells has been shown to mediate a costimulatory signal important for activating T lymphocytes during an immune response. Here, we characterize mice that lack a functional HSA gene, constructed by homologous recombination in embryonic stem cells. While T-cell and myeloid development appears normal, these mice show a leaky block in B-cell development with a reduction in late pre-B and immature B-cell populations in the bone marrow. Nevertheless, peripheral B-cell numbers are normal and no impairment of immune function could be detected in these mice in a variety of immunization and infection models. We also observed that erythrocytes are altered in HSA-deficient mice. They show a higher tendency to aggregate and are more susceptible to hypotonic lysis in vitro. In vivo, the mean half-life of HSA-deficient erythrocytes was reduced. When infected with the malarial parasite Plasmodium chabaudi chabaudi, the levels of parasite-bearing erythrocytes in HSA-deficient mice were also significantly elevated, but the mice were able to clear the infection with kinetics similar to wild-type mice and were immune to a second challenge. Thus, apart from alterations in erythrocytes and a mild block in B-cell development, the regulated expression of HSA appears to be dispensable for the maturation and functioning of those cell lineages that normally express it.


1989 ◽  
Vol 9 (9) ◽  
pp. 3614-3620 ◽  
Author(s):  
S M Aldritt ◽  
J T Joseph ◽  
D F Wirth

We have identified a gene that encodes the polypeptide cytochrome b in the avian malarial parasite Plasmodium gallinaceum. The gene containing the open reading frame was found to be located on a 6.2-kilobase multimeric extrachromosomal element. The amino acid translation from this gene demonstrated significant similarities to cytochrome b sequences from yeast, mammal, and fungus genomes. We present evidence that the P. gallinaceum cytochrome b transcript is part of a larger primary transcript from the element that is subsequently processed. The message for P. gallinaceum cytochrome b was found to be 1.2 kilobases in size. This is the first report identifying a mitochondrial nucleic acid sequence in malaria-causing organisms and suggests that a functional cytochrome system may exist in these parasites.


2004 ◽  
Vol 384 (2) ◽  
pp. 429-436 ◽  
Author(s):  
Sundaramurthy VARADHARAJAN ◽  
B. K. Chandrashekar SAGAR ◽  
Pundi N. RANGARAJAN ◽  
Govindarajan PADMANABAN

Our previous studies have demonstrated de novo haem biosynthesis in the malarial parasite (Plasmodium falciparum and P. berghei). It has also been shown that the first enzyme of the pathway is the parasite genome-coded ALA (δ-aminolaevulinate) synthase localized in the parasite mitochondrion, whereas the second enzyme, ALAD (ALA dehydratase), is accounted for by two species: one species imported from the host red blood cell into the parasite cytosol and another parasite genome-coded species in the apicoplast. In the present study, specific antibodies have been raised to PfFC (parasite genome-coded ferrochelatase), the terminal enzyme of the haem-biosynthetic pathway, using recombinant truncated protein. With the use of these antibodies as well as those against the hFC (host red cell ferrochelatase) and other marker proteins, immunofluorescence studies were performed. The results reveal that P. falciparum in culture manifests a broad distribution of hFC and a localized distribution of PfFC in the parasite. However, PfFC is not localized to the parasite mitochondrion. Immunoelectron-microscopy studies reveal that PfFC is indeed localized to the apicoplast, whereas hFC is distributed in the parasite cytoplasm. These results on the localization of PfFC are unexpected and are at variance with theoretical predictions based on leader sequence analysis. Biochemical studies using the parasite cytosolic and organellar fractions reveal that the cytosol containing hFC accounts for 80% of FC enzymic activity, whereas the organellar fraction containing PfFC accounts for the remaining 20%. Interestingly, both the isolated cytosolic and organellar fractions are capable of independent haem synthesis in vitro from [4-14C]ALA, with the cytosol being three times more efficient compared with the organellar fraction. With [2-14C]glycine, most of the haem is synthesized in the organellar fraction. Thus haem is synthesized in two independent compartments: in the cytosol, using the imported host enzymes, and in the organellar fractions, using the parasite genome-coded enzymes.


2010 ◽  
Vol 19 (8) ◽  
pp. 1577-1586 ◽  
Author(s):  
Reema Alag ◽  
Insaf A. Qureshi ◽  
Nagakumar Bharatham ◽  
Joon Shin ◽  
Julien Lescar ◽  
...  

Author(s):  
Tathagat Banerjee ◽  
Aditya Jain ◽  
Sibi Chakkaravarthy Sethuraman ◽  
Suresh Chandra Satapathy ◽  
S. Karthikeyan ◽  
...  

2000 ◽  
Vol 68 (7) ◽  
pp. 4312-4318 ◽  
Author(s):  
Sanchita Chatterjee ◽  
Subhash Singh ◽  
Rashmi Sohoni ◽  
Nevil J. Singh ◽  
Akhil Vaidya ◽  
...  

ABSTRACT Antibodies against the Plasmodium falciparum P0 ribosomal phosphoprotein (PfP0) have been detected exclusively but extensively in malaria-immune persons. Polyclonal rabbit and mice sera were raised against two recombinant polypeptides of P. falciparum P0 protein, PfP0N and PfP0C, covering amino acids 17 to 61 and the remaining amino acids 61 to 316, respectively. Sera against both these domains detected a 35-kDa protein fromPlasmodium yoelii subsp. yoelii, a rodent malarial parasite, and stained the surface of merozoites in immunofluorescence assays. Total immunoglobulin G (IgG) purified from rabbit and mouse anti-PfP0 sera by ammonium sulfate and DEAE-cellulose chromatography was used for passive transfer experiments in mice. Mice passively immunized with both anti-PfP0N and anti-PfP0C showed distinctly lower levels of parasitemia than control mice. With immunizations on days −1, 0, 1, 3, and 5, about 50% of both sets of mice receiving anti-PfP0N and anti-PfP0C cleared the lethal 17XL strain of P. yoelii and revived by day 25. All the control mice died by day 10. By extending the immunization schedule, the survival period of the mice could be extended for every mouse that received anti-PfP0 IgG. These data demonstrate the cross-protection of the anti-PfP0 IgG and establish parasite P0 protein as a target for invasion-blocking antibodies.


Sign in / Sign up

Export Citation Format

Share Document