Experimental study of sizing of surface cracks by using leakage magnetic field and Hall element probe

2021 ◽  
pp. 223-228
Author(s):  
Dorian Minkov ◽  
Tetsuo Shoji ◽  
Jinyi Lee
Author(s):  
S. Hasegawa ◽  
T. Kawasaki ◽  
J. Endo ◽  
M. Futamoto ◽  
A. Tonomura

Interference electron microscopy enables us to record the phase distribution of an electron wave on a hologram. The distribution is visualized as a fringe pattern in a micrograph by optical reconstruction. The phase is affected by electromagnetic potentials; scalar and vector potentials. Therefore, the electric and magnetic field can be reduced from the recorded phase. This study analyzes a leakage magnetic field from CoCr perpendicular magnetic recording media. Since one contour fringe interval corresponds to a magnetic flux of Φo(=h/e=4x10-15Wb), we can quantitatively measure the field by counting the number of finges. Moreover, by using phase-difference amplification techniques, the sensitivity for magnetic field detection can be improved by a factor of 30, which allows the drawing of a Φo/30 fringe. This sensitivity, however, is insufficient for quantitative analysis of very weak magnetic fields such as high-density magnetic recordings. For this reason we have adopted “fringe scanning interferometry” using digital image processing techniques at the optical reconstruction stage. This method enables us to obtain subfringe information recorded in the interference pattern.


Materials ◽  
2021 ◽  
Vol 14 (8) ◽  
pp. 1870
Author(s):  
Dmitry Borin ◽  
Robert Müller ◽  
Stefan Odenbach

This paper presents the results of an experimental study of the influence of an external magnetic field on the shear flow behaviour of a magnetic fluid based on barium hexaferrite nanoplates. With the use of rheometry, the magnetoviscosity and field-dependent yield-stress in the fluid are evaluated. The observed fluid behaviour is compared to that of ferrofluids with magnetic nanoparticles having high dipole interaction. The results obtained supplement the so-far poorly studied topic of the influence of magnetic nanoparticles’ shape on magnetoviscous effects. It is concluded that the parameter determining the observed magnetoviscous effects in the fluid under study is the ratio V2/l3, where V is the volume of the nanoparticle and l is the size of the nanoparticle in the direction corresponding to its orientation in the externally applied magnetic field.


1981 ◽  
Vol 59 (6) ◽  
pp. 812-819 ◽  
Author(s):  
S. C. Varma ◽  
V. Kumar ◽  
A. P. Sharma

An experimental study is carried out on the effects of nuclear mass on leading particle multiplicity and multiparticle production with the help of an emulsion stack exposed to 50 GeV/c π− beam under a strong pulsed magnetic field. The study of the effect of nuclear mass on the forward–backward asymmetry in a π−–A collision is also carried out using the grey particle multiplicity data. The results support the concept of "formation length" of radiation. An attempt is made to explain the space–time structure of hadronic matter in terms of the additive quark model of multiparticle production.


Sign in / Sign up

Export Citation Format

Share Document