Assessment of In-Situ Stresses and Deformability of Rock Mass in Water Supply Tunnels in Mumbai, Maharashtra

2020 ◽  
pp. 17-24
Author(s):  
B.K. Saha ◽  
J.M. Shirke ◽  
A.K. Ghosh ◽  
I. Azaraiah
2012 ◽  
Vol 4 (1) ◽  
pp. 44-53 ◽  
Author(s):  
Peng Yan ◽  
Wenbo Lu ◽  
Ming Chen ◽  
Zhigang Shan ◽  
Xiangrong Chen ◽  
...  
Keyword(s):  

2015 ◽  
Vol 16 ◽  
pp. 7-13 ◽  
Author(s):  
Pawan Kumar Shrestha ◽  
Krishna Kanta Panthi

Tunnels excavated in weak and schistose rock mass below high overburden (rock cover) are prone to instability in the form of tunnel deformation. The deformation in the tunnel takes place to such an extent that it is irreversible and of significant magnitude, which is often known as tunnel squeezing. In order to limit such plastic deformation in tunnels, it is desirable that the response of the rock mass to induced stresses is known so that requirement of rock support can be estimated. Contrary to the assumption of uniform in-situ stresses made in analytical solutions for elasto-plastic analyses, large degree of stress anisotropy condition prevails in most tunnelling conditions. The effect of such anisotropic stress condition leads to varying degrees of deformations around the tunnel contour. Therefore, stress anisotropy is also an important factor that needs to be addressed to ensure a proper support design for tunnels. This paper discusses the inter-relationship among rock mass property, in-situ stresses including horizontal to vertical stress ratio, tunnel support pressure and deformation. The study is based on the tunnel cases from the Nepal Himalaya. Three completed tunnel projects were selected, where moderate to large tunnel deformations had been recorded. Long term deformation records were analyzed to assess time independent and time dependent deformations. Results of the analyses of the tunnels in weak and schistose rock mass at stress anisotropy states show that a good correlation among tunnel strain, rock mass shear modulus, support pressure, vertical stress and stress ratio of horizontal to vertical stresses exists. Moreover, the study also shows that significant amount of time dependent deformation can occur in such weak rock mass. Such deformation was found to be high in schist and micaceous phyllite, moderate in graphitic phyllite and low in siliceous phyllite. The suggested relationships can be used as a basis for an early estimate of instantaneous and final deformations and the corresponding requirement of support pressures in tunnel walls in weak and schistose rock mass.DOI: http://dx.doi.org/10.3126/hn.v16i0.12212HYDRO Nepal  Journal of Water Energy and EnvironmentIssue. 16, 2015 January Page: 7-13 Upload date: March 1, 2015 


2021 ◽  
Vol 2021 ◽  
pp. 1-17
Author(s):  
Qian Dong ◽  
XinPing Li ◽  
TingTing Liu

The study of influence of in-situ stress on energy transmission of blasting stress wave in jointed rock mass is the basis for improving the utilization rate and optimizing the distribution of explosive energy in underground rock mass during blasting excavation. Thus, a model test was carried out to explore the energy transmission of blasting stress wave in jointed rock mass under different in-situ stresses, and the energy transmitting coefficients of the blasting stress wave were derived. Then, the influencing factors such as the scale and distribution of in-situ stresses and the angle and number of joints were discussed, respectively. The results showed that the energy transmission of blasting stress wave in jointed rock mass was affected by both the intact rock and joints, and the energy transmitting coefficients first increased and then decreased with the rise of static load and lateral static load coefficient, indicating that the lower in-situ stress can enhance the energy transmission of stress wave in rock mass to some extent. While the in-situ stress was relatively large, the stress wave energy dissipation in intact rock was dominant. The number and angle of joints also had a remarkable impact on the energy attenuation of the stress wave; when the stress wave was vertically incident on the joints, the energy transmitting coefficient was the largest. For underground engineering, the orientation of the dominant structural plane and the in-situ stress state of rock mass should be determined firstly, and the blasting parameters can be optimized to improve the utilization of explosive energy and achieve the designed blasting effect.


2004 ◽  
Vol 261-263 ◽  
pp. 1097-1102 ◽  
Author(s):  
Jian Liu ◽  
Xia Ting Feng ◽  
Xiu Li Ding ◽  
Huo Ming Zhou

The time-dependent behavior of rock mass, which is generally governed by joints and shearing zones, is of great significance for engineering design and prediction of long-term deformation and stability. In situ creep test is a more effective method than laboratory test in characterizing the creep behavior of rock mass with joint or shearing zone due to the complexity of field conditions. A series of in situ creep tests on granite with joint at the shiplock area of the Three-Gorges Project and basalt with shearing zone at the right abutment of the Xiluodu Project were performed in this study. Based on the test results, the stress-displacement-time responses of the joints and basalt are analyzed, and their time-dependent constitutive model and model coefficients are given, which is crucial for the design to prevent the creep deformations of rock masses from causing the failure of the operation of the shiplock gate at the Three-Gorges Project and long-term stability of the Xiluodu arc dam.


2019 ◽  
Vol 8 (1) ◽  
pp. 4-27 ◽  
Author(s):  
Fan Feng ◽  
Shaojie Chen ◽  
Diyuan Li ◽  
Wanpeng Huang ◽  
Kang Peng ◽  
...  

2011 ◽  
Vol 90-93 ◽  
pp. 2033-2036 ◽  
Author(s):  
Jin Shan Sun ◽  
Hong Jun Guo ◽  
Wen Bo Lu ◽  
Qing Hui Jiang

The factors affecting the TBM tunnel behavior in jointed rock mass is investigated. In the numerical models the concrete segment lining of TBM tunnel is concerned, which is simulated as a tube neglecting the segment joint. And the TBM tunnel construction process is simulate considering the excavation and installing of the segment linings. Some cases are analyzed with different joint orientation, joint spacing, joint strength and tunnel depth. The results show that the shape and areas of loosing zones of the tunnel are influenced by the parameters of joint sets and in-situ stress significantly, such as dip angle, spacing, strength, and the in-situ stress statement. And the stress and deformation of the tunnel lining are influenced by the parameters of joint sets and in-situ stress, too.


Sign in / Sign up

Export Citation Format

Share Document