Determination of three-dimensional directions of in situ stress from core discing

Rock Stress ◽  
2020 ◽  
pp. 237-243
Author(s):  
K. Matsuki ◽  
N. Kaga ◽  
T. Yokoyama ◽  
N. Tsuda
1992 ◽  
pp. 9-18 ◽  
Author(s):  
Shozo SAKUMA ◽  
Shinji KIKUCHI ◽  
Tetsuya NAKAMURA ◽  
Yoshiaki MIZUTA

Rock Stress ◽  
2020 ◽  
pp. 245-251
Author(s):  
N. Kaga ◽  
K. Matsuki ◽  
T. Yokoyama ◽  
N. Tsuda

2002 ◽  
Vol 118 (10/11) ◽  
pp. 659-666
Author(s):  
Koji MATSUKI ◽  
Noriyuki KAGA ◽  
Kiyotoshi SAKAGUCHI

2006 ◽  
Vol 306-308 ◽  
pp. 1509-1514 ◽  
Author(s):  
Jing Feng ◽  
Qian Sheng ◽  
Chao Wen Luo ◽  
Jing Zeng

It is very important to study the pristine stress field in Civil, Mining, Petroleum engineering as well as in Geology, Geophysics, and Seismology. There are various methods of determination of in-situ stress in rock mass. However, hydraulic fracturing techniques is the most convenient method to determine and interpret the test results. Based on an hydraulic fracturing stress measurement campaign at an underground liquefied petroleum gas storage project which locates in ZhuHai, China, this paper briefly describes the various uses of stress measurement, details of hydraulic fracturing test system, test procedure adopted and the concept of hydraulic fracturing in arriving at the in-situ stresses of the rock mass.


Materials ◽  
2020 ◽  
Vol 13 (2) ◽  
pp. 406
Author(s):  
Siqian Zhang ◽  
Jing Liu ◽  
Haoyu Zhang ◽  
Jie Sun ◽  
Lijia Chen

Natural materials are generally damage adaptive through their multilevel architectures, with the characteristics of compositional and mechanical gradients. This study demonstrated that the desired elastic gradient can be in-situ stress-induced in a titanium alloy, and that the alloy showed extreme fatigue-damage tolerance through the crack deflection and branch due to the formation of a three-dimensional elastically graded zone surrounding the crack tip. This looks like a perceptive and adaptive mechanism to retard the crack: the higher stress concentrated at the tip and the larger elastic gradient to be induced. The retardation is so strong that a gradient nano-grained layer with a thickness of less than 2 μm formed at the crack tip due to the highly localized and accumulated plasticity. Furthermore, the ultrafine-grained alloy with the nano-sized precipitation also exhibited good damage tolerance.


Sign in / Sign up

Export Citation Format

Share Document