Seismic Protection of Cultural Relics Using Three-Dimensional Base-Isolation System

Author(s):  
Bai Wen ◽  
Dai Junwu
2012 ◽  
Vol 234 ◽  
pp. 96-101 ◽  
Author(s):  
Donato Cancellara ◽  
Fabio de Angelis

In the present work we have analyzed a particular base isolation system for the seismic protection of a multi-storey reinforced concrete (RC) building. The viscous dampers and friction sliders are the devices adopted in parallel for realizing the base isolation system. The base isolation structure has been designed and verified according to European seismic code EC8 and by considering for the friction sliders the influence of the sliding velocity on the value of the friction coefficient. A dynamic nonlinear analysis for a three-dimensional base isolated structure has been performed. Recorded accelerograms for bi-directional ground motions have been used which comply with the requirements imposed by EC8 for the representation of a seismic action in a time history analysis. In this paper a comparative analysis is presented between the base isolated structure with the described hybrid base isolation system and the traditional fixed base structure.


Author(s):  
Takahiro Shimada ◽  
Junji Suhara ◽  
Kazuhiko Inoue

Three dimensional (3D) seismic isolation devices have been developed to use for the base isolation system of the heavy building like a nuclear reactor building. The developed seismic isolation system is composed of rolling seal type air springs and the hydraulic type springs with rocking suppression system for vertical base isolation device. In horizontal direction, the same laminated rubber bearings are used as horizontal isolation device for these systems. The performances and the applicability have already been evaluated by the technical feasibility tests and performance tests for each system. In this study, it was evaluated that the performance of the 3D base isolation system with rolling seal type air springs combined with hydraulic rocking suppression devices. A 1/7 scaled model of the 3D base isolation devices were manufactured and some performance test were executed for each device. For the rolling seal type air springs, dynamic loading test was executed with a vibration table, and pressure resistant ability test was executed for reinforced air springs. In the dynamic loading test, it is confirmed that the natural period and damping performance were verified. In the pressure resistant ability test, it is confirmed that the air springs had sufficient strength. For the hydraulic rocking suppression system, forced dynamic loading test was carried out in order to measure the frictional and oil flow resistance force on each cylinder. And the vibration table tests were carried out with supported weight of 228 MN in order to evaluate and to confirm the horizontal and vertical isolation performance, rocking suppression performance, and the applicability of the this seismic isolation system as the combined system. 4 rolling seal type air springs and 4 hydraulic load-carrying cylinders with rocking suppression devices supported the weight. As a result, the proposed system was verified that it could be applied to the actual nuclear power plant building to be target.


2012 ◽  
Vol 19 (6) ◽  
pp. 1327-1339 ◽  
Author(s):  
Radhikesh P. Nanda ◽  
Pankaj Agarwal ◽  
Manish Shrikhande

A feasibility study of friction base isolation system for seismic protection has been performed. Four different sliding interfaces, namely, green marble/High Density Poly Ethylene (HDPE), green marble/green marble, green marble/geosynthetic, and green marble/ rubber layers have been studied through experimental and analytical investigations. The experimental investigations show that the coefficient of friction values of these interfaces lies in the desirable range for seismic protection, i.e., 0.05 to 0.15. The analytical investigation reveals that most of these sliding interfaces are effective in reducing spectral accelerations up to 50% and the sliding displacement is restricted within plinth projection of 75 mm (3 in). Green marble and geosynthetic are found to be better alternatives for use in friction isolation system with equal effectiveness of energy dissipation and limiting the earthquake energy transmission to super structure during strong earthquake leading to a low cost, durable solution for earthquake protection of masonry buildings.


2013 ◽  
Vol 353-356 ◽  
pp. 2039-2042
Author(s):  
Sun Ying ◽  
Jian Gang Sun ◽  
Li Fu Cui

To study the dynamic buckling characteristics of storage tank subjected to three-dimensional seismic excitation, selecting 50000m3 large vertical floating roof storage tanks as research object, the base isolation system was introduced and allowing for the impact of floating roof. The finite element models of non-isolation and base isolation storage tank were established respectively by ADINA. The seismic responses of these two types of storage tank were calculated and the numerical solutions were compared. The results indicate that the dynamic buckling modes of these two types of storage tank system belong to plastic buckling; base isolation measure can effectively increase the critical load value of dynamic buckling and plasticity yielding, the improve rates up to 38% and 60% respectively. The effectiveness of the base isolation can be verified from the angle of buckling.


Sign in / Sign up

Export Citation Format

Share Document