Evaporative Capillary Instability of Swirling Fluid Layer with Mass Transfer

Author(s):  
Mukesh Kumar Awasthi ◽  
Rishi Asthana ◽  
Ziya Uddin
2014 ◽  
Vol 136 (10) ◽  
Author(s):  
Mukesh Kumar Awasthi

In this paper, we investigate the effect of irrotational, viscous pressure on capillary instability of the interface between two viscous, incompressible, and thermally conducting fluids in a fully saturated porous medium when the phases are enclosed between two horizontal cylindrical surfaces coaxial with the interface and when there is mass and heat transfer across the interface. The analysis extends our earlier work in which the capillary instability of two viscous and thermally conducting fluids in a fully saturated porous medium was studied assuming that the motion and pressure are irrotational and the viscosity enters through the jump in the viscous normal stress in the normal stress balance at the interface. Here, we use another irrotational theory in which the discontinuities in the irrotational tangential velocity and shear stress are eliminated in the global energy balance by taking viscous contributions to the irrotational pressure. We use the Darcy's model, and a quadratic dispersion relation is obtained. It is observed that heat and mass transfer has a stabilizing effect on the stability of the system and this effect enhances in the presence of irrotational viscous pressure.


2019 ◽  
Vol 142 (2) ◽  
Author(s):  
Mukesh Kumar Awasthi

Abstract This paper examines the effect of transfer of heat and mass on the capillary instability between a viscoelastic liquid and a viscous gas. The viscoelastic liquid obeys the Oldroyd B-model. These two fluid layers considered in coaxial cylinders and viscoelastic–viscous potential flow theory are used for investigation. To study the stability of the interface, the normal-mode procedure is employed and a cubic dispersion equation in terms of growth rate has been obtained. We observe that the viscoelastic liquid–viscous gas interface is more unstable than the viscous liquid–viscous gas interface. Additionally, we show that the unstable axisymmetric wave modes are stabilized by allowing heat transfer at the interface.


2012 ◽  
Vol 134 (3) ◽  
Author(s):  
Dominique Gobin ◽  
Benoît Goyeau

In many industrial processes or natural phenomena, coupled heat and mass transfer and fluid flow take place in configurations combining a clear fluid and a porous medium. Since the pioneering work by Beavers and Joseph (1967), the modeling of such systems has been a controversial issue, essentially due to the description of the interface between the fluid and the porous domains. The validity of the so-called one-domain approach—more intuitive and numerically simpler to implement—compared to a two-domain description where the interface is explicitly accounted for, is now clearly assessed. This paper reports recent developments and the current state of the art on this topic, concerning the numerical simulation of such flows as well as the stability studies. The continuity of the conservation equations between a fluid and a porous medium are examined and the conditions for a correct handling of the discontinuity of the macroscopic properties are analyzed. A particular class of problems dealing with thermal and double diffusive natural convection mechanisms in partially porous enclosures is presented, and it is shown that this configuration exhibits specific features in terms of the heat and mass transfer characteristics, depending on the properties of the porous domain. Concerning the stability analysis in a horizontal layer where a fluid layer lies on top of a porous medium, it is shown that the onset of convection is strongly influenced by the presence of the porous medium. The case of double diffusive convection is presented in detail.


Sign in / Sign up

Export Citation Format

Share Document