scholarly journals Thermosolutal Natural Convection in Partially Porous Domains

2012 ◽  
Vol 134 (3) ◽  
Author(s):  
Dominique Gobin ◽  
Benoît Goyeau

In many industrial processes or natural phenomena, coupled heat and mass transfer and fluid flow take place in configurations combining a clear fluid and a porous medium. Since the pioneering work by Beavers and Joseph (1967), the modeling of such systems has been a controversial issue, essentially due to the description of the interface between the fluid and the porous domains. The validity of the so-called one-domain approach—more intuitive and numerically simpler to implement—compared to a two-domain description where the interface is explicitly accounted for, is now clearly assessed. This paper reports recent developments and the current state of the art on this topic, concerning the numerical simulation of such flows as well as the stability studies. The continuity of the conservation equations between a fluid and a porous medium are examined and the conditions for a correct handling of the discontinuity of the macroscopic properties are analyzed. A particular class of problems dealing with thermal and double diffusive natural convection mechanisms in partially porous enclosures is presented, and it is shown that this configuration exhibits specific features in terms of the heat and mass transfer characteristics, depending on the properties of the porous domain. Concerning the stability analysis in a horizontal layer where a fluid layer lies on top of a porous medium, it is shown that the onset of convection is strongly influenced by the presence of the porous medium. The case of double diffusive convection is presented in detail.

Author(s):  
Dominique Gobin ◽  
Benoiˆt Goyeau

In many industrial processes or natural phenomena coupled heat and mass transfer and fluid flow take place in configurations combining a clear fluid and a porous medium. Since the pioneering work by Beavers and Joseph (1967), the modelling of such systems has been a controversial issue, essentially due to the description of the interface between the fluid and the porous domains. The validity of the so-called one-domain approach — more intuitive and numerically simpler to implement — compared to a two-domain description where the interface is explicitly accounted for, is now clearly assessed. This paper reports recent developments and the current state of the art on this topic, concerning the numerical simulation of such flows as well as the stability studies. The continuity of the conservation equations between a fluid and a porous medium are examined and the conditions for a correct handling of the discontinuity of the macroscopic properties are analyzed. A particular class of problems dealing with thermal and double diffusive natural convection mechanisms in partially porous enclosures is presented, and it is shown that this configuration exhibits specific features in terms of the heat and mass transfer characteristics, depending on the properties of the porous domain. From the viewpoint of the stability of convection in a horizontal layer where a fluid layer lies on top of a porous medium, the analysis shows that the onset of convection is strongly influenced by the presence of the porous medium. The case of thermal convection is fully detailed and many open problems arise in the field of double diffusive convection.


2018 ◽  
Vol 16 ◽  
pp. 140-157 ◽  
Author(s):  
Nasreen Bano ◽  
Oluwole Daniel Makinde ◽  
B.B. Singh ◽  
Shoeb R. Sayyed

This paper deals with the study of the heat and mass transfer characteristics of natural convection from a horizontalsurface embedded in a radiating fluid saturated porous medium. Similarity solutions for buoyancy induced heat and masstransfer from a horizontal surface, where the wall temperature and concentration are a power function of distance fromthe origin, are obtained by using an integral approach of Von Karman type. The effects of the governing parameters suchas buoyancy ratio, Lewis number, radiation parameter and the power-law exponent on local Nusselt and local Sherwoodnumbers have been investigated both numerically and graphically.


2018 ◽  
Vol 7 (1) ◽  
pp. 65-72
Author(s):  
Rishi Raj Kairi ◽  
Ch. RamReddy ◽  
Santanu Raut

Abstract This paper emphasizes the thermo-diffusion and viscous dissipation effects on double diffusive natural convection heat and mass transfer characteristics of non-Newtonian power-law fluid over a vertical cone embedded in a non-Darcy porous medium with variable heat and mass flux conditions. The Ostwald–de Waele power-law model is employed to describe the behavior of non-Newtonian fluid. Local non-similarity procedure is applied to transform the set of non-dimensional partial differential equations into set of ordinary differential equations and then the resulting system of equations are solved numerically by Runge-Kutta fourth order method together with a shooting technique. The influence of pertinent parameters on temperature and concentration, heat and mass transfer rates are analyzed in opposing and aiding buoyancy cases through graphical representation and explored in detail.


Sign in / Sign up

Export Citation Format

Share Document