Building Autonomous IIoT Networks Using Energy Harvesters

2022 ◽  
pp. 275-290
Author(s):  
Rathishchandra R. Gatti ◽  
Shruthi H. Shetty ◽  
Ashwath Rao
Keyword(s):  
IEEE Access ◽  
2021 ◽  
pp. 1-1
Author(s):  
Eustaquio Martinez-Cisneros ◽  
Luis A. Velosa-Moncada ◽  
Ernesto A. Elvira-Hernandez ◽  
Omar I. Nava-Galindo ◽  
Luz Antonio Aguilera-Cortes ◽  
...  

2021 ◽  
Vol 16 (1) ◽  
Author(s):  
Yixuan Lin ◽  
Yuqiong Zhang ◽  
Fan Zhang ◽  
Meining Zhang ◽  
Dalong Li ◽  
...  

AbstractThe electroactive β-phase in Poly (vinylidene fluoride, PVDF) is the most desirable conformation due to its highest pyro- and piezoelectric properties, which make it feasible to be used as flexible sensors, wearable electronics, and energy harvesters etc. In this study, we successfully developed a method to obtain high-content β-phase PVDF films and nanofiber meshes by mechanical stretching and electric spinning. The phase transition process and pyro- and piezoelectric effects of stretched films and nanofiber meshes were characterized by monitoring the polarized light microscopy (PLM) images, outputting currents and open-circuit voltages respectively, which were proved to be closely related to stretching ratio (λ) and concentrations. This study could expand a new route for the easy fabrication and wide application of PVDF films or fibers in wearable electronics, sensors, and energy harvesting devices.


iScience ◽  
2021 ◽  
pp. 102808
Author(s):  
Zheng-Yang Huo ◽  
Dong-Min Lee ◽  
Young-Jun Kim ◽  
Sang-Woo Kim

2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Hanjun Ryu ◽  
Hyun-moon Park ◽  
Moo-Kang Kim ◽  
Bosung Kim ◽  
Hyoun Seok Myoung ◽  
...  

AbstractSelf-powered implantable devices have the potential to extend device operation time inside the body and reduce the necessity for high-risk repeated surgery. Without the technological innovation of in vivo energy harvesters driven by biomechanical energy, energy harvesters are insufficient and inconvenient to power titanium-packaged implantable medical devices. Here, we report on a commercial coin battery-sized high-performance inertia-driven triboelectric nanogenerator (I-TENG) based on body motion and gravity. We demonstrate that the enclosed five-stacked I-TENG converts mechanical energy into electricity at 4.9 μW/cm3 (root-mean-square output). In a preclinical test, we show that the device successfully harvests energy using real-time output voltage data monitored via Bluetooth and demonstrate the ability to charge a lithium-ion battery. Furthermore, we successfully integrate a cardiac pacemaker with the I-TENG, and confirm the ventricle pacing and sensing operation mode of the self-rechargeable cardiac pacemaker system. This proof-of-concept device may lead to the development of new self-rechargeable implantable medical devices.


Sign in / Sign up

Export Citation Format

Share Document