Classification of the Magnetic Resonance Imaging of the Brain Tumor Using the Residual Neural Network Framework

2021 ◽  
pp. 267-277
Author(s):  
Tina ◽  
Sanjay Kumar Dubey
2021 ◽  
Vol 11 (3) ◽  
pp. 352
Author(s):  
Isselmou Abd El Kader ◽  
Guizhi Xu ◽  
Zhang Shuai ◽  
Sani Saminu ◽  
Imran Javaid ◽  
...  

The classification of brain tumors is a difficult task in the field of medical image analysis. Improving algorithms and machine learning technology helps radiologists to easily diagnose the tumor without surgical intervention. In recent years, deep learning techniques have made excellent progress in the field of medical image processing and analysis. However, there are many difficulties in classifying brain tumors using magnetic resonance imaging; first, the difficulty of brain structure and the intertwining of tissues in it; and secondly, the difficulty of classifying brain tumors due to the high density nature of the brain. We propose a differential deep convolutional neural network model (differential deep-CNN) to classify different types of brain tumor, including abnormal and normal magnetic resonance (MR) images. Using differential operators in the differential deep-CNN architecture, we derived the additional differential feature maps in the original CNN feature maps. The derivation process led to an improvement in the performance of the proposed approach in accordance with the results of the evaluation parameters used. The advantage of the differential deep-CNN model is an analysis of a pixel directional pattern of images using contrast calculations and its high ability to classify a large database of images with high accuracy and without technical problems. Therefore, the proposed approach gives an excellent overall performance. To test and train the performance of this model, we used a dataset consisting of 25,000 brain magnetic resonance imaging (MRI) images, which includes abnormal and normal images. The experimental results showed that the proposed model achieved an accuracy of 99.25%. This study demonstrates that the proposed differential deep-CNN model can be used to facilitate the automatic classification of brain tumors.


An unusual cell number or mass in a living being brain is termed as “brain tumor”. A living being’s brain is present in the skull and the skull is very stiff in nature. Any external development within such a rigid space can trigger serious difficulties in the living being body. Tumors in the brain of a living being may be cancerous or may not. Therefore, the main cure is the detections of the brain tumor, its magnitude, and place. This study paper proposes a combination of approaches which integrates statistical methods and machine-based training practices “Support for the Vector Machine (SVM)” and the “Artificial Neural Network (ANN)” to achieve greater efficiency in brain tumors and in their phase’s identification as well as their place within magnetic resonance imaging pictures. In order to divide the magnetic resonance imaging pictures, an enhanced variant of standard “K-means” with Fuzzy C-means and temperature-based K-means & altered fuzzy clustering means. The value of K in the suggested method is an enhanced value, therefore, assists the fuzzy c to mean technique to perceive the tumor area


2018 ◽  
Vol 3 (2) ◽  
pp. 179
Author(s):  
Oscar Adriyanto ◽  
Halim Agung

Brain tumors are the second leading cause of death in the world in children under 20, scientists and researchers are developing applications to react brain tumors based on magnetic resonance imaging images. In this application the method used is sobel and morphological operations. Based on research conducted on brain tumor edge detection based on magnetic resonance imaging image, sobel method can reduce the noise contained in the image mri and can localize the edge of the image of Magnetic Resonance Imaging well. This research can conclude that the sobel method is suitable for edge detection but there is still some unprocessed noise, with the results of the brain imaging of 30 test images have 60% percentage, while for the use of edge detection method of 62.11%.


2016 ◽  
Vol 9 (2) ◽  
pp. 358-362 ◽  
Author(s):  
Anastasie M. Dunn-Pirio ◽  
Santoshi Billakota ◽  
Katherine B. Peters

Seizures are common among patients with brain tumors. Transient, postictal magnetic resonance imaging abnormalities are a long recognized phenomenon. However, these radiographic changes are not as well studied in the brain tumor population. Moreover, reversible neuroimaging abnormalities following seizure activity may be misinterpreted for tumor progression and could consequently result in unnecessary tumor-directed treatment. Here, we describe two cases of patients with brain tumors who developed peri-ictal pseudoprogression and review the relevant literature.


Sign in / Sign up

Export Citation Format

Share Document