Aspects of Mordant Dyeing of Textile Fibers

Author(s):  
Supriyo Chakraborty ◽  
Lipika Chakraborty
1996 ◽  
Vol 13 (3) ◽  
pp. 310-316 ◽  
Author(s):  
Ki-Hyeok Chang ◽  
Hyo-Kwang Bae ◽  
Jae-Jin Shim

Molecules ◽  
2021 ◽  
Vol 26 (4) ◽  
pp. 829
Author(s):  
Lusine Sargsyan ◽  
Thomas Hippe ◽  
Hartmut Manneck ◽  
Volkmar Vill

The aim of this work was to optimize our natural hair dyeing system which we described in our previous work and to compare with other dyeing systems. Therefore, we investigated concentration limits of matcha and mordant and compared this new dyeing method with commercial permanent systems on the market. Completely unpigmented hair tresses were dyed with matcha powder (camelia sinensis) and iron(II)-lactate. To investigate the wash fastness and concentration limits, the differently dyed hair tresses were spectrophotometrically measured. The comparison of the damage potential for which cysteic acid is an indicator was measured by NIR. The concentration of matcha and mordant are responsible for the intensity of the color results. The higher the matcha or the mordant concentration, the darker the color results of the dyed hair tresses. Hair damage of matcha mordant dyeing is comparable with results of commercial permanent hair coloration systems. Moreover, the results of wash fastness of matcha mordant dyed hair tresses is comparable and even better by tendency to permanent colored hair tresses.


2021 ◽  
pp. 002199832110316
Author(s):  
Nuno Gama ◽  
B Godinho ◽  
Ana Barros-Timmons ◽  
Artur Ferreira

In this study polyurethane (PU) residues were mixed with residues of textile fibers (cotton, wool and synthetic fibers up to 70 wt/wt) to produce 100% recycled composites. In addition, the effect of the type of fiber on the performance of the ensuing composites was evaluated. The presence of fibers showed similar effect on the density, reducing the density in the 5.5-9.0% range. In a similar manner, the addition of fillers decreased their thermal conductivity. The 70 wt/wt wool composite presented 38.1% lower thermal conductivity when compared to the neat matrix, a reduction that was similar for the other type of fibers. Moreover, the presence of fillers yields stiffer materials, especially in the case of the Wool based composites, which with 70 wt/wt of filler content increased the tensile modulus of the ensuing material 3.4 times. This was attributed to the aspect ratio and stiffness of this type of fiber. Finally, the high-water absorption and lower thermal stability observed, especially in the case of the natural fibers, was associated with the hydrophilic nature of fibers and porosity of composites. Overall, the results suggest that these textile-based composites are suitable for construction and automotive applications, with the advantage of being produced from 100% recycled raw-materials, without compromised performance.


Sign in / Sign up

Export Citation Format

Share Document