recycled composites
Recently Published Documents


TOTAL DOCUMENTS

26
(FIVE YEARS 13)

H-INDEX

4
(FIVE YEARS 1)

2021 ◽  
Vol 5 (11) ◽  
pp. 299
Author(s):  
Julien Moothoo ◽  
Mahadev Bar ◽  
Pierre Ouagne

Recycling of thermoplastic composites has drawn a considerable attention in the recent years. However, the main issue with recycled composites is their inferior mechanical properties compared to the virgin ones. In this present study, an alternative route to the traditional mechanical recycling technique of thermoplastic composites has been investigated with the view to increase mechanical properties of the recycled parts. In this regard, the glass/polypropylene laminate offcuts are cut in different grain sizes and processed in bulk form, using compression moulding. Further, the effect of different grain sizes (i.e., different lengths, widths and thicknesses) and other process-related parameters (such as mould coverage) on the tensile properties of recycled aggregate-reinforced composites have been investigated. The tensile properties of all composite samples are tested according to ISO 527-4 test method and the significance of test results is evaluated according to Student’s t-test and Fisher’s F-test respectively. It is observed that the tensile moduli of the recycled panels are close to the equivalent quasi-isotropic continuous fibre-reinforced reference laminate while there is a noteworthy difference in the strengths of the recycled composites. At this stage, the manufactured recycled composites show potential for stiffness-driven application.


Polymers ◽  
2021 ◽  
Vol 13 (18) ◽  
pp. 3192
Author(s):  
Sankar Karuppannan Gopalraj ◽  
Timo Kärki

Recycled carbon fibre–reinforced epoxy (rCF/EP) composites and recycled glass fibre–reinforced epoxy (rGF/EP) composites were numerically investigated to examine their mechanical properties, such as uniaxial tensile and impact resistance, using finite element (FE) methods. The recycled composites possess unidirectional, long and continuous fibre arrangements. A commercially available Abaqus/CAE software was used to perform an explicit non-linear analysis with a macroscale modelling approach, assuming the recycled composites as both homogenous and isotropic hardening. Five composite types were subjected to a numerical study based on the recycled fibre’s volume fraction (40 and 60%) of rCF/EP and rGF/EP, along with (100%) fibreless cured epoxy samples. The materials were defined as elastoplastic with a continuum ductile damage (DUCTCRT) model. The experimental tensile test results were processed and calibrated as primary input data for the developed FE models. The numerical tensile results, maximum principal stress and logarithmic strain were validated with their respective experimental results. The stress–strain curves of both results possess a high accuracy, supporting the developed FE model. The numerical impact tests examined the von Mises stress distribution and found an exponential decrease in the stiffness of the composite types as their strength decreased, with the 60% rCF/EP sample being the stiffest. The model was sensitive to the mesh size, hammer velocity and simulation time step. Additionally, the total internal energy and plastic dissipation energy were measured, but were higher than the experimentally measured energies, as the FE models eliminated the defects from the recycled process, such as a poor fibre wettability to resin, fibre bundle formation in rCFs and char formation in rGFs. Overall, the developed FE models predicted the results for a defect-free rCF/EP and rGF/EP composite. Hence, the adopted modelling techniques can validate the experimental results of recycled composites with complex mechanical properties and damage behaviours in tensile and impact loading conditions.


Polymers ◽  
2021 ◽  
Vol 13 (17) ◽  
pp. 2938
Author(s):  
Dong-Jun Kwon ◽  
Kang Rae Cho ◽  
Hyoung-Seock Seo

Outdated-waste-carbon-fiber-reinforced olefin composites (oCFOCs) were fabricated with easily disposable polyolefin resins, polypropylene (PP), high-density polyethylene (HDPE), and low-density polyethylene (LDPE), by compressive molding using a hot press. The flexural and impact strengths of the oCFOCs from each respective resin type and oCF content, ranging from 35 to 70 wt.%, were increased by the aging treatment (120 °C and 95% humidity under a pressure of 0.8 MPa) until an aging time of three days, due to improved resin impregnation. For the oCFOC with PP, the hydrogen bond between PP and developed C-O groups due to the aging treatment and the existing silane layer of oCF is considered to assist cohesion between the resin and oCF. In particular, PP and 45 wt.% oCF content were the most effective conditions for improving the oCFOCs’ mechanical properties, in addition to endowing the oCFOCs with good moldability and dimensional stability. Our results demonstrate that durable recycled composites can be manufactured using oCF and PP.


Polymers ◽  
2021 ◽  
Vol 13 (16) ◽  
pp. 2836
Author(s):  
Mohammed N. Alghamdi

Fly ash polymer composites are innovative high-performance materials that reduce the environmental worries and disposal complications of heavy industry produced fly ash. This study developed and characterized such composites of high-density polyethylene (HDPE) matrices and found that the use of small (50–90 µm) particles of fly ash could give rise to the tensile modulus (~95%) and tensile strength (~7%) of their reinforced composites when compared to neat HDPE materials. While these results themselves convey a strong message of how fly ash can be effectively utilized, this was not the key aim of the current study. The study was extended to examine the effect of fly ash particle size on the recyclability of relevant HDPE composites. The extrusion-based multiple recycling of composites gave slightly lower mechanical properties, primarily due to filler/matrix delamination when large fly ash particles were used. Compared to freshly made fly ash-filled HDPE composites, although using small (50–90 µm) fly ash particles reduced the tensile modulus and tensile strength of recycled composites, the values were still far above those from neat HDPE materials. This novel insight directs the effective utilization of fly ash and provides long-term sustainable and economical solutions for their practical applicability.


2021 ◽  
pp. 002199832110316
Author(s):  
Nuno Gama ◽  
B Godinho ◽  
Ana Barros-Timmons ◽  
Artur Ferreira

In this study polyurethane (PU) residues were mixed with residues of textile fibers (cotton, wool and synthetic fibers up to 70 wt/wt) to produce 100% recycled composites. In addition, the effect of the type of fiber on the performance of the ensuing composites was evaluated. The presence of fibers showed similar effect on the density, reducing the density in the 5.5-9.0% range. In a similar manner, the addition of fillers decreased their thermal conductivity. The 70 wt/wt wool composite presented 38.1% lower thermal conductivity when compared to the neat matrix, a reduction that was similar for the other type of fibers. Moreover, the presence of fillers yields stiffer materials, especially in the case of the Wool based composites, which with 70 wt/wt of filler content increased the tensile modulus of the ensuing material 3.4 times. This was attributed to the aspect ratio and stiffness of this type of fiber. Finally, the high-water absorption and lower thermal stability observed, especially in the case of the natural fibers, was associated with the hydrophilic nature of fibers and porosity of composites. Overall, the results suggest that these textile-based composites are suitable for construction and automotive applications, with the advantage of being produced from 100% recycled raw-materials, without compromised performance.


2021 ◽  
Author(s):  
Daniel Whisler ◽  
Rafael Gomez Consarnau ◽  
Ryan Coy

The continued use of structural plastics in consumer products, industry, and transportation represents a potential source for durable, long lasting, and recyclable roadways. Costs to dispose of reinforced plastics can be similar to procuring new asphalt with mechanical performance exceeding that of the traditional road surface. This project examines improved material development times by leveraging advanced computational material models based on validated experimental data. By testing traditional asphalt and select carbon and glass reinforced composites, both new and recycled, it is possible to develop a finite element simulation that can predict the material characteristics under a number of loads virtually, and with less lead time compared to experimental testing. From the tested specimens, composites show minimal strength degradation when recycled and used within the asphalt design envelopes considered, with an average of 49% less wear, two orders of magnitude higher compressive strength, and three orders for tensile strength. Predictive computational analysis using the validated material models developed for this investigation confirms the long-term durability.


2021 ◽  
Author(s):  
Wael Ballout ◽  
Naima Sallem-Idrissi ◽  
Michel Sclavons ◽  
Catherine Doneux ◽  
Christian Bailly ◽  
...  

Abstract An original wet recycling method is developed for large carbon-fibers reinforced-polymers composite panels, addressed through a proof-of-concept fabrication of a new composite part based on recycled fibers. The recycling process relies on formic acid as separation reagent at room temperature and under atmospheric pressure conditions. Electron microscopy and thermal analysis indicate that the recycled fibers are covered by a thin layer of about 10wt.% of residual resin, alternating with few small particles, as compared to the virgin fibers exhibiting a smooth surface. The mechanical properties of composites based on neat and recycled fibers are determined from interlaminar shear strength, compression, compression after impact and Iosipescu shear tests. The recycled composites show promising shear and strength values with a deterioration of performances limited to about 10 to 33% depending on the property as compared to the reference. The recycled carbon fibers can thus be reused for structural applications requiring moderate to high performances. The loss of properties is attributed to a lower adhesion between fresh epoxy resin and recycled carbon fibers having lost their sizing, partly compensated by a good interface between fresh and residual cured epoxy thanks to mechanical anchoring as well as chemical reactions.


2021 ◽  
pp. 2100116
Author(s):  
Andrea Mantelli ◽  
Alessia Romani ◽  
Raffaella Suriano ◽  
Marinella Levi ◽  
Stefano Turri

2020 ◽  
pp. 089270572093073
Author(s):  
Elham Nadali ◽  
Reza Naghdi

This study emphasizes on closed-loop recycling of wood flour/poly (vinyl chloride) composites, since there is normally a considerable amount of material waste in wood plastic production lines. Composite materials were produced and subjected to four times reprocessing cycles under industrial conditions. Detailed analytical methods including bending strength, modulus of elasticity, impact strength, scanning electron microscopy, fiber length, water absorption, contact angle, Fourier transform infrared, and dynamic mechanical thermal analysis (DMTA) were conducted to evaluate the effects of recycling on the mentioned composites. Results demonstrated that the recycled composites, except for the four-time recycled ones, had lower bending strength, modulus of elasticity, and impact strength due to fiber-chain scission/fracture resulting from shear stress during reprocessing; however, impact strength remained almost unchanged after the first recycling cycle. Results also revealed that generally the reprocessed composites showed lower water absorption rates due to better fiber wetting and encapsulation. There was also a reduction in hemicellulose hydroxyl groups, rendering the recycled composites less hydrophilic. DMTA results showed an increase in mechanical loss factor (tan δ) for all the reprocessed composites showing a more viscous than elastic nature. The glass transition temperature of Rec4 composites increased due to polymer dehydrochlorination and the resulting cross-linking, which restricted the molecular mobility of the polymer chains.


Sign in / Sign up

Export Citation Format

Share Document