Network Path Control and Factors That Affect Routing Table Properties

2021 ◽  
pp. 209-297
Author(s):  
James Aweya
Keyword(s):  
2020 ◽  
Vol 64 (1-4) ◽  
pp. 1495-1504
Author(s):  
Fangchao Xu ◽  
Yongquan Guo ◽  
Ran Zhou ◽  
Junjie Jin ◽  
Chuan Zhao ◽  
...  

To solve the problem of reduction of suspension force of permanent magnet system with variable magnetic flux path control, according to the structure of the system, suspension principle of the permanent magnet system with variable magnetic flux path control and the generation principle of the load torque, the influence of the mechanical structure of the system on the suspension force is analyzed by changing part of parameters of the system structure. The results show that the existence of magnetic isolation plate is the main reason for the decrease of suspension force, the permanent magnet ring can be thickened to 11.91 mm, the annular gap can be reduced to 1 mm, thickness of the “F” shaped magnetizer can be increased to 9 mm to increase the suspension force.


2020 ◽  
Vol 140 (7) ◽  
pp. 364-371
Author(s):  
Kenta Torishima ◽  
Kazuhiro Shimura ◽  
Mitsuhide Sato ◽  
Tsutomu Mizuno

2011 ◽  
Vol 135-136 ◽  
pp. 781-787
Author(s):  
Yong Feng Ju ◽  
Hui Chen

This paper proposed a new Ad Hoc dynamic routing algorithm, which based on ant-colony algorithm in order to reasonably extend the dynamic allocation of network traffic and network lifetime. The Algorithm choose path according transmission latency, path of the energy rate, congestion rate, dynamic rate. The Algorithm update the routing table by dynamic collection of path information after path established. The analyse shows that algorithm increases the network throughput, reduces the average end-to-end packet transmission latency, and extends the network lifetime, achieves an improving performance.


Author(s):  
G. Duelen ◽  
J. Held ◽  
U. Kirchhoff ◽  
H. Munch
Keyword(s):  

Author(s):  
Adrian C. Orifici ◽  
Phisit Wongwichit ◽  
Nuth Wiwatanawongsa

2014 ◽  
Vol 519-520 ◽  
pp. 1239-1242
Author(s):  
Xiao Hu Yu

An improved congestion control mechanism based on mobile agent for wireless sensor networks is proposed, which includes node-level congestion and link-level congestion control. The formers congestion information is collected and distributed by mobile agents (MA). When mobile agent travels through the networks, it can select a less-loaded neighbor node as its next hop and update the routing table according to the nodes congestion status. Minimum package of node outgoing traffic was preferentially transmitted in the link-level congestion. Simulation result shows that proposed mechanism attains high delivery ratio and throughput with reduced delay when compared with the existing technique.


Sign in / Sign up

Export Citation Format

Share Document