An Improved Congestion Control Mechanism Based on Mobile Agent for Wireless Sensor Networks

2014 ◽  
Vol 519-520 ◽  
pp. 1239-1242
Author(s):  
Xiao Hu Yu

An improved congestion control mechanism based on mobile agent for wireless sensor networks is proposed, which includes node-level congestion and link-level congestion control. The formers congestion information is collected and distributed by mobile agents (MA). When mobile agent travels through the networks, it can select a less-loaded neighbor node as its next hop and update the routing table according to the nodes congestion status. Minimum package of node outgoing traffic was preferentially transmitted in the link-level congestion. Simulation result shows that proposed mechanism attains high delivery ratio and throughput with reduced delay when compared with the existing technique.

2012 ◽  
Vol 426 ◽  
pp. 275-278
Author(s):  
Cheng Yu Lai ◽  
Xiao Guang Fu

In wireless sensor networks, congestion causes overall channel quality to degrade and loss rates to raise, leads to buffer drops and increased delays, and tends to be grossly unfair toward nodes whose data has to traverse a larger number of radio hops. Hybrid congestion control mechanisms relieve the congestion by creating the new path; when establishment of a new path is failed, fairness aggregate mechanisms limits forward rate, ensures that each source node sends data fairly. Based on energy-saving, algorithms for mild congestion have been improved.


2013 ◽  
Vol 397-400 ◽  
pp. 2641-2646 ◽  
Author(s):  
Yi Sun ◽  
Min Li ◽  
Peng Xu

Congestion in wireless sensor networks can affect the networks performance seriously,not only it has impact on data transmission and the quality of service, but also wastes energy and shortens the network lifetime. Aiming at this issue, this paper proposed a cross-layer congestion control algorithm based on traffic prediction (CCATP), it can take congestion mitigation measures in advance according to the prediction result. CCATP comprises three mechanisms: (i) congestion prediction; (ii) local congestion control mechanism based on backoff time adjustment; (iii) transmission route selection based global congestion control mechanism; Simulation experiment results show that CCATP can reduce the packet loss number and improve the energy efficiency significantly, so as to effectively improve the service performance of network.


2017 ◽  
Vol 13 (1) ◽  
pp. 155014771668484 ◽  
Author(s):  
Huthiafa Q Qadori ◽  
Zuriati A Zulkarnain ◽  
Zurina Mohd Hanapi ◽  
Shamala Subramaniam

Recently, wireless sensor networks have employed the concept of mobile agent to reduce energy consumption and obtain effective data gathering. Typically, in data gathering based on mobile agent, it is an important and essential step to find out the optimal itinerary planning for the mobile agent. However, single-agent itinerary planning suffers from two primary disadvantages: task delay and large size of mobile agent as the scale of the network is expanded. Thus, using multi-agent itinerary planning overcomes the drawbacks of single-agent itinerary planning. Despite the advantages of multi-agent itinerary planning, finding the optimal number of distributed mobile agents, source nodes grouping, and optimal itinerary of each mobile agent for simultaneous data gathering are still regarded as critical issues in wireless sensor network. Therefore, in this article, the existing algorithms that have been identified in the literature to address the above issues are reviewed. The review shows that most of the algorithms used one parameter to find the optimal number of mobile agents in multi-agent itinerary planning without utilizing other parameters. More importantly, the review showed that theses algorithms did not take into account the security of the data gathered by the mobile agent. Accordingly, we indicated the limitations of each proposed algorithm and new directions are provided for future research.


2014 ◽  
Vol 989-994 ◽  
pp. 4493-4496
Author(s):  
Zhi Jing Zhang ◽  
Zeng Xin Xie

As the study on and promotion of wireless sensor networks (WSN) are deepening, people have increasingly higher requirements for the transmission speed and transmission performance of wireless sensor networks. Network congestion is an important factor of the transmission performance of a network, so congestion control becomes a hot research topic in the studies on the improvement of WSN services. Based on the study on WSN congestion control mechanism, this paper proposes an adaptive congestion control algorithm and simulates the algorithm. The simulation result shows that this algorithm can ensure stable network performance.


Author(s):  
Kavitha Ganesh ◽  
P. Latchoumy ◽  
A. Sonya

<span>Heterogeneous Wireless Sensor Networks (HWSN) gathers information from a cooperative network. In HWSN, the sensor nodes are scattered and the major challenges are topology control, battery optimization, packet loss and link lifetime. The existing techniques do not concentrate on all the mentioned issues. The objective of this work is to provide congestion-free data transfer with higher throughput and increased packet delivery ratio. In the proposed methodology, three protocols are designed and developed, namely, Hop by Hop Rate Adjustment Protocol (HHRA), Energy Efficient Data Transfer Protocol (EEDT) and Alternative Routing Congestion Control Protocol (ARCC). The HHRA protocol senses the traffic in the channel and adjusts the transmission rate accordingly to avoid congestion. Secondly, the EEDT protocol is used to find specific nodes that are more efficient and transfer packets through those nodes to improve throughput. The ARCC protocol is used to redirect the path of transmission during the occurrence of congestion. Thus, the proposed traffic contention and control mechanisms ensures congestion free transmission and increases the packet delivery ratio by 23% and average throughput by 20% compared to the Dynamic Contention Window based Congestion Control (DCWCC) algorithm. </span>


2021 ◽  
Vol 10 (2) ◽  
pp. 28
Author(s):  
Saeid Pourroostaei Ardakani

Mobile agents have the potential to offer benefits, as they are able to either independently or cooperatively move throughout networks and collect/aggregate sensory data samples. They are programmed to autonomously move and visit sensory data stations through optimal paths, which are established according to the application requirements. However, mobile agent routing protocols still suffer heavy computation/communication overheads, lack of route planning accuracy and long-delay mobile agent migrations. For this, mobile agent route planning protocols aim to find the best-fitted paths for completing missions (e.g., data collection) with minimised delay, maximised performance and minimised transmitted traffic. This article proposes a mobile agent route planning protocol for sensory data collection called MINDS. The key goal of this MINDS is to reduce network traffic, maximise data robustness and minimise delay at the same time. This protocol utilises the Hamming distance technique to partition a sensor network into a number of data-centric clusters. In turn, a named data networking approach is used to form the cluster-heads as a data-centric, tree-based communication infrastructure. The mobile agents utilise a modified version of the Depth-First Search algorithm to move through the tree infrastructure according to a hop-count-aware fashion. As the simulation results show, MINDS reduces path length, reduces network traffic and increases data robustness as compared with two conventional benchmarks (ZMA and TBID) in dense and large wireless sensor networks.


In wireless sensor networks, sensor nodes are limited in memory, battery power and computational power. Wireless Sensor Networks (WSN) are a specific category of wireless adhoc networks where their performance is highly affected by application, lifetime, storage capacity, topology changes and the communication medium and bandwidth. Whenever the traffic load in the network increases, buffer at a node becomes full and it cannot handle any more data packets. This causes packet loss and retransmission which affects delivery ratio, energy and decreases network lifetime. Congestion is an important issue in wireless networks. Congestion in WSN severely affects loss rate, channel quality, the number of retransmissions, traffic flow, network lifetime, delay, energy as well as throughput. The congestion can be resolved in WSN either by reducing the data rate or by increasing the resources to form alternative paths. In this paper, an Implementation of Improved TOPSIS Method for congestion control in WSN known as Improved Hierarchical tree Alternative path protocol has been proposed which provides an improved performance over the basic HTAP protocol.


Sign in / Sign up

Export Citation Format

Share Document