The impact of hardware buffer size settings on digital audio production: The model example of the Avid pro tools digital audio workstation

Author(s):  
Ching-Chien Liang ◽  
Chao-Chih Huang ◽  
Chian-Fan Liou
2021 ◽  
Vol 67 (2) ◽  
Author(s):  
Angelika Nieszała ◽  
Daniel Klich

AbstractThe methods used to assess the significance of land cover in the vicinity of a road for the mortality of mesopredators are diverse. In assessing the effect of land cover along the road on road causalities, scientists use various buffer sizes, or even no buffer along the road. The aim of this study was to verify how results of land cover effects on the mortality of mesopredators on roads may differ when analyzing various buffer sizes from the road. We assessed road causalities in the Warmian-Masurian voivodeship (Poland) from 3 consecutive years: 2015, 2016, and 2017. The roads were divided into equal sections of 2000 m each with buffer size of radius: 10, 250, 500, and 1000 m. We analyzed the number of road kills of red fox and European badger separately in a generalized linear model, whereas explanatory variables we used land cover types (based on the Corine Land Cover inventory) and traffic volume. Mean annual mortality from road collisions amounts to 2.36% of the red fox population and 3.82% of the European badger population. We found that the buffer size determines the results of the impact of land cover on mesocarnivore mortality on roads. The red fox differed from the European badger in response to land cover depending on the buffer size. The differences we have shown relate in particular to built-up areas. Our results indicate a 500-m buffer as best reflecting the land cover effects in road kills of both species. This was confirmed by model evaluation and a tendency to use or avoid the vicinity of human settlements of the analyzed species. We concluded that buffer size will probably affect mostly the significance of cover types that are spatially correlated with roads, positively or negatively. We suggest that the home range size of given species in local conditions should be assessed before determining the size of the buffer for analysis.


2021 ◽  
Vol ahead-of-print (ahead-of-print) ◽  
Author(s):  
Bhavin Shah

PurposeThe assorted piece-wise retail orders in a cosmetics warehouse are fulfilled through a separate fast-picking area called Forward Buffer (FB). This study determines “just-right” size of FB to ensure desired Customer Service Level (CSL) at least storage wastages. It also investigates the impact of FB capacity and demand variations on FB leanness.Design/methodology/approachA Value Stream Mapping (VSM) tool is applied to analyse the warehouse activities and mathematical model is implemented in MATLAB to quantify the leanness at desired CSL. A comprehensive framework is developed to determine lean FB buffer size for a Retail Distribution Centre (RDC) of a cosmetics industry.FindingsThe CSL increases monotonically; however, the results concerning spent efforts towards CSL improvement gets diminished with raised demand variances. The desired CSL can be achieved at least FB capacity and fewer Storage Waste (SW) as it shifts towards more lean system regime. It is not possible to improve Value Added (VA) time beyond certain constraints and therefore, it is recommended to reduce Non-Value Added (NVA) order processing activities to improve leanness.Research limitations/implicationsThis study determines “just-right” capacity and investigates the impact of buffer and demand variations on leanness. It helps managers to analyse warehouse processes and design customized distribution policies in food, beverage and retail grocery warehouse.Practical implicationsProposed buffering model offers customized strategies beyond pre-set CSL by varying it dynamically to reduce wastages. The mathematical model deriving lean sizing and mitigation guidelines are constructive development for managers.Originality/valueThis research provides an inventive approach of VSM model and Mathematical algorithm endorsing lean thinking to design effective buffering policies in a forward warehouse.


2014 ◽  
Vol 25 ◽  
pp. 43-46 ◽  
Author(s):  
Karen Villanueva ◽  
Matthew Knuiman ◽  
Andrea Nathan ◽  
Billie Giles-Corti ◽  
Hayley Christian ◽  
...  

2021 ◽  
Vol 27 (1) ◽  
pp. 112-129
Author(s):  
Saba Qasim Jabbar ◽  
Dheyaa Jasim Kadhim

A robust video-bitrate adaptive scheme at client-aspect plays a significant role in keeping a good quality of video streaming technology experience. Video quality affects the amount of time the video has turned off playing due to the unfilled buffer state. Therefore to maintain a video streaming continuously with smooth bandwidth fluctuation, a video buffer structure based on adapting the video bitrate is considered in this work. Initially, the video buffer structure is formulated as an optimal control-theoretic problem that combines both video bitrate and video buffer feedback signals. While protecting the video buffer occupancy from exceeding the limited operating level can provide continuous video streaming, it may also cause a video bitrate oscillation. So the video buffer structure is adjusted by adding two thresholds as operating points for overflow and underflow states to filter the impact of throughput fluctuation on video buffer occupancy level. Then a bandwidth prediction algorithm is proposed for enhancing the performance of video bitrate adaptation. This algorithm's work depends on the current video buffer level, video bitrate of the previous segment, and iterative throughput measurements to predict the best video bitrate for the next segment. Simulation results show that reserving a bandwidth margin is better in adapting the video bitrate under bandwidth variation and then reducing the risk of video playback freezing. Simulation results proved that the playback freezing happens two times: firstly, when there is no bandwidth margin used and secondly, when the bandwidth margin is high while smooth video bitrate is obtained with moderate value. The proposed scheme is compared with other two schemes such as smoothed throughput rate (STR) and Buffer Based Rate (BBR) in terms of prediction error, QoE preferences, buffer size, and startup delay time, then the proposed scheme outperforms these schemes in attaining smooth video bitrates and continuous video playback.


Sign in / Sign up

Export Citation Format

Share Document