Experimental study of dynamic response of structures with gaps excited by random white noise: Flexible impact support

Author(s):  
M. Taazount ◽  
F. Lepaule ◽  
J. Renard
2021 ◽  
Vol 233 ◽  
pp. 109012
Author(s):  
Zhiwen Yang ◽  
Xinran Ji ◽  
Mingxiao Xie ◽  
Jinzhao Li ◽  
Huaqing Zhang ◽  
...  

2014 ◽  
Vol 6 (5) ◽  
pp. 053108 ◽  
Author(s):  
Anders Mandrup Hansen ◽  
Robert Laugesen ◽  
Henrik Bredmose ◽  
Robert Mikkelsen ◽  
Nikolaos Psichogios

Author(s):  
A. Ertas ◽  
O. Cuvalci

Abstract The dynamic response of a beam-tip mass-pendulum system subjected to sinusoidal excitations is considered. The conditions under which resonant and nonresonant oscillations occur are investigated and discussed. The main objective of this study was to conduct a series of experiments to investigate the autoparametric interaction between the first two modes of the system. The use of a pendulum as a passive control device was experimentally evaluated.


2020 ◽  
Vol 13 (4) ◽  
pp. 50-57
Author(s):  
Noor D. Abd ◽  
Safa H. AbidAwn

This paper exhibits an experimental study on dynamic response of a single pile under dynamic load which comes from motor placed on cap pile called a vibration source. This study used the effect of the dynamic movement of vibration on one pile, collapsible soil (gypseous soil) used in this study with 30% gypsum content. The experiment is performed in a dry and soak state. A solid steel pile with a slenderness ratio of 27 was inserted into the soil after preparing it in layers in a steel container (30 * 30 * 60) cm. The test was performed under a dynamic response to the different frequencies 10, 15, 20, and 25 Hz. The results showed that the speed, acceleration and displacement increase with increasing frequency of the vibration source in addition to that the values of speed, acceleration and displacement amplitude are less in the case of soaking compared to their values in the dry state.


2018 ◽  
Vol 77 (12) ◽  
Author(s):  
Yu-chuan Yang ◽  
Hui-ge Xing ◽  
Xing-guo Yang ◽  
Ming-liang Chen ◽  
Jia-wen Zhou

Sign in / Sign up

Export Citation Format

Share Document