Hydrodynamic Instability

2021 ◽  
pp. 91-115
Author(s):  
R.N. Keshavamurty
2006 ◽  
Vol 133 ◽  
pp. 201-204
Author(s):  
J.-M. Clarisse ◽  
C. Boudesocque-Dubois ◽  
J.-P. Leidinger ◽  
J.-L. Willien

Author(s):  
Stephan Schlimpert ◽  
Seong Ryong Koh ◽  
Antje Feldhusen ◽  
Benedikt Roidl ◽  
Matthias H. Meinke ◽  
...  

2020 ◽  
Vol 500 (3) ◽  
pp. 4248-4256
Author(s):  
Hongping Deng ◽  
Gordon I Ogilvie ◽  
Lucio Mayer

ABSTRACT Warped accretion discs of low viscosity are prone to hydrodynamic instability due to parametric resonance of inertial waves as confirmed by local simulations. Global simulations of warped discs, using either smoothed particle hydrodynamics or grid-based codes, are ubiquitous but no such instability has been seen. Here, we utilize a hybrid Godunov-type Lagrangian method to study parametric instability in global simulations of warped Keplerian discs at unprecedentedly high resolution (up to 120 million particles). In the global simulations, the propagation of the warp is well described by the linear bending-wave equations before the instability sets in. The ensuing turbulence, captured for the first time in a global simulation, damps relative orbital inclinations and leads to a decrease in the angular momentum deficit. As a result, the warp undergoes significant damping within one bending-wave crossing time. Observed protoplanetary disc warps are likely maintained by companions or aftermath of disc breaking.


2001 ◽  
Vol 87 (24) ◽  
Author(s):  
L. M. Fisher ◽  
P. E. Goa ◽  
M. Baziljevich ◽  
T. H. Johansen ◽  
A. L. Rakhmanov ◽  
...  

1975 ◽  
Vol 97 (1) ◽  
pp. 47-53 ◽  
Author(s):  
R. E. Forbes ◽  
J. W. Cooper

Natural convection in horizontal layers of water cooled from above to near freezing was studied analytically. The water was confined laterally and underneath by rigid insulators, and the upper horizontal surface was subjected to: (1) a constant 0C temperature, rigid conducting boundary, and (2) a free, water to air convection boundary condition, in which the convective heat transfer coefficient was held constant at values of 5.68 W/m2 · K and 284 W/m2 · K (1.0 and 50.0 Btu/hr ft2F) and the temperature of the ambient air was maintained at 0C. The ratios of the width to the depth of the rectangular water layers under consideration were W/D = 1, 3, and 6. Initially the water is assumed to be at a uniform temperature of either 4C or 8C, and then the upper surface boundary condition was suddenly applied. It was observed in all cases for which the initial water temperature was 4C, that the water remained stagnant and became thermally stratified. Heat transfer application of either of the surface boundary conditions to water initially at 8C produced large convective eddies extending from the bottom to the top of the layer of water. As the liquid layer cooled further, two distinct horizontal regions appeared, the 4C isothermal line separating the two. This produces a region of hydrodynamic instability in the fluid since the maximum density fluid (4C) is physically located above the less dense fluid in the lower portion of the cavity. The large eddies which appeared initially were confined to the hydrodynamically unstable region bounded by the 4C isotherm and the bottom of the cavity. The action of viscous shearing forces upon the stable water above the 4C isotherm produced a second “layer” of eddies. An alternating direction implicit finite difference method was used to solve the coupled system of partial differential equations. The paper presents transient isotherms and streamlines and a discussion of the effect of maximum density on the flow patterns.


Sign in / Sign up

Export Citation Format

Share Document