Natural Convection in a Horizontal Layer of Water Cooled From Above to Near Freezing

1975 ◽  
Vol 97 (1) ◽  
pp. 47-53 ◽  
Author(s):  
R. E. Forbes ◽  
J. W. Cooper

Natural convection in horizontal layers of water cooled from above to near freezing was studied analytically. The water was confined laterally and underneath by rigid insulators, and the upper horizontal surface was subjected to: (1) a constant 0C temperature, rigid conducting boundary, and (2) a free, water to air convection boundary condition, in which the convective heat transfer coefficient was held constant at values of 5.68 W/m2 · K and 284 W/m2 · K (1.0 and 50.0 Btu/hr ft2F) and the temperature of the ambient air was maintained at 0C. The ratios of the width to the depth of the rectangular water layers under consideration were W/D = 1, 3, and 6. Initially the water is assumed to be at a uniform temperature of either 4C or 8C, and then the upper surface boundary condition was suddenly applied. It was observed in all cases for which the initial water temperature was 4C, that the water remained stagnant and became thermally stratified. Heat transfer application of either of the surface boundary conditions to water initially at 8C produced large convective eddies extending from the bottom to the top of the layer of water. As the liquid layer cooled further, two distinct horizontal regions appeared, the 4C isothermal line separating the two. This produces a region of hydrodynamic instability in the fluid since the maximum density fluid (4C) is physically located above the less dense fluid in the lower portion of the cavity. The large eddies which appeared initially were confined to the hydrodynamically unstable region bounded by the 4C isotherm and the bottom of the cavity. The action of viscous shearing forces upon the stable water above the 4C isotherm produced a second “layer” of eddies. An alternating direction implicit finite difference method was used to solve the coupled system of partial differential equations. The paper presents transient isotherms and streamlines and a discussion of the effect of maximum density on the flow patterns.

Author(s):  
Shijo Thomas ◽  
C. B. Sobhan ◽  
Jaime Taha-Tijerina ◽  
T. N. Narayanan ◽  
P. M. Ajayan

Nanofluids are suspensions or colloids produced by dispersing nanoparticles in base fluids like water, oil or organic fluids, so as to improve their thermo-physical properties. Investigations reported in recent times have shown that the addition of nanoparticles significantly influence the thermophysical properties, such as the thermal conductivity, viscosity, specific heat and density of base fluids. The convective heat transfer coefficient also has shown anomalous variations, compared to those encountered in the base fluids. By careful selection of the parameters such as the concentration and the particle size, it has been possible to produce nanofluids with various properties engineered depending on the requirement. A mineral oil–boron nitride nanofluid system, where an increased thermal conductivity and a reduced electrical conductivity has been observed, is investigated in the present work to evaluate its heat transfer performance under natural convection. The modified mineral oil is produced by chemically dispersing boron nitride nanoparticles utilizing a one step method to obtain a stable suspension. The mineral oil based nanofluid is investigated under transient free convection heat transfer, by observing the temperature-time response of a lumped parameter system. The experimental study is used to estimate the time-dependent convective heat transfer coefficient. Comparisons are made with the base fluid, so that the enhancement in the heat transfer coefficient under natural convection situation can be estimated.


Author(s):  
Jesse M. Johns ◽  
W. D. Reece

Often a forced convection heat transfer coefficient is used to calculate the peak fuel temperature for a rectangular lattice TRIGA core even though the core is cooled by natural convection. The arguments for applying a forced convection empirical relationship are examined and another relationship is suggested. The peak fuel temperature was calculated using two different correlations, Dittus-Boelter and natural convection, for pool temperatures of 30°C and 60°C. The Dittus-Boelter correlation predicted a fuel temperature rise of 1.85°C for this difference in pool temperature, contrary to the predicted rise of 25.64°C from natural convection relationships. Experimental data shows that the relationship of fuel temperature rise with increasing pool temperature is more accurately represented by the natural convection correlation than with Dittus-Boelter. Using a derived natural convection correlation, the calculated peak fuel temperatures then closely match measured data. A procedure was developed to access convective heat transfer coefficient changes in the cladding gap as a function of reactor power for the hot channel which are similar to those presented in literature.


2019 ◽  
Vol 141 (4) ◽  
Author(s):  
M. Adrienne Parsons ◽  
M. Keith Sharp

This study evaluated the building cooling capacity of sky radiation, which was previously identified to have the greatest cooling potential among common ambient sources for climates across the U.S. A heat pipe augmented sky radiator system was simulated by a thermal network with nine nodes, including a thin polyethylene cover with and without condensation, white (zinc oxide) painted radiator plate, condenser and evaporator ends of the heat pipe, thermal storage fluid (water), tank wall, room, sky and ambient air. Heat transfer between nodes included solar flux and sky radiation to cover and plate, wind convection and radiation from cover to ambient, radiation from plate to ambient, natural convection and radiation from plate to cover, conduction from plate to condenser, two-phase heat transfer from evaporator to condenser, natural convection from evaporator to water and from water to tank wall, natural convection and radiation from tank wall to room, and overall heat loss from room to ambient. A thin layer of water was applied to simulate condensation on the cover. Nodal temperatures were simultaneously solved as functions of time using typical meteorological year (TMY3) weather data. Auxiliary cooling was added as needed to limit room temperature to a maximum of 23.9 °C. For this initial investigation, a moderate climate (Louisville, KY) was used to evaluate the effects of radiator orientation, thermal storage capacity, and cooling load to radiator area ratio (LRR). Results were compared to a Louisville baseline with LRR = 10 W/m2 K, horizontal radiator and one cover, which provided an annual sky fraction (fraction of cooling load provided by sky radiation) of 0.855. A decrease to 0.852 was found for an increase in radiator slope to 20 deg, and a drop to 0.832 for 53 deg slope (latitude + 15 deg, a typical slope for solar heating). These drops were associated with increases in average radiator temperature by 0.73 °C for 20 deg and 1.99 °C for 53 deg. A 30% decrease in storage capacity caused a decrease in sky fraction to 0.843. Sky fractions were 0.720 and 0.959 for LRR of 20 and 5, respectively. LRR and thermal storage capacity had strong effects on performance. Radiator slope had a surprisingly small impact, considering that the view factor to the sky at 53 deg tilt is less than 0.5.


Acoustics ◽  
2020 ◽  
Vol 2 (2) ◽  
pp. 279-292
Author(s):  
Carlo Bartoli ◽  
Alessandro Franco ◽  
Massimo Macucci

We present an experimental investigation of the effect of ultrasound application to increase the heat-transfer coefficient for natural convection of a dielectric fluid. An experimental analysis is carried out to estimate the increase of the convective heat-transfer coefficient between an electronic board and a refrigerant fluid, the Fluorinert Electronic Fluid FC-72. For this purpose, an experimental apparatus composed of an electronic board, its electronic control circuit, and data acquisition systems have been designed and implemented. The data collected appear to confirm in some situations of practical interest the enhancement effect of the convective heat-transfer coefficient in connection with the use of ultrasound. The most favorable condition was observed with the fluid in quite low subcooled conditions.


2006 ◽  
Vol 129 (5) ◽  
pp. 679-682 ◽  
Author(s):  
Seung Dong Lee ◽  
Jong Kuk Lee ◽  
Kune Y. Suh

This paper presents results of steady-state experiments concerned with natural convection heat transfer of air in a rectangular pool in terms of the Nusselt number (Nu) versus the modified Rayleigh number (Ra′) varying from 109 to 1012. Cartridge heaters were immersed in the working fluid to simulate uniform volumetric heat generation. Two types of boundary conditions were adopted in the test: (I) top cooled, and (II) top and bottom cooled. The other sides were kept insulated. In the case of boundary condition II, the upward heat transfer ratio, Nuup∕(Nuup+Nudn), turned out to be 0.7–0.8 in the range of Ra′ between 1.05×1010 and 3.68×1011.


1994 ◽  
Vol 116 (2) ◽  
pp. 138-147 ◽  
Author(s):  
Y. Joshi ◽  
M. D. Kelleher ◽  
M. Powell ◽  
E. I. Torres

An experimental investigation of natural convection liquid immersion cooling of a three by three array of rectangular protrusions in an enclosure is presented. The heated elements geometrically simulated 20 pin dual-inline electronic packages and were mounted on a plexiglass substrate, which formed one vertical wall of a dielectric liquid filled rectangular enclosure. The remaining vertical boundaries of the enclosure were insulated, while the top and bottom were maintained at prescribed temperatures using individual heat exchanger plates. Protrusion surface temperatures in steady state are reported for a range of power dissipation levels for three fluorinert liquids spanning a Prandtl number range from about 20 to 1400. The influence of enclosure top and bottom surface boundary conditions and its width on element temperatures is investigated. Non-dimensional heat transfer results are empirically correlated. Changes in component temperatures due to partial powering of the array are also measured.


1983 ◽  
Vol 105 (1) ◽  
pp. 19-22 ◽  
Author(s):  
W. M. M. Schinkel ◽  
C. J. Hoogendoorn

The boundary condition at the hot absorber plate in a solar collector will influence the natural convection in the enclosure. For the isoflux boundary condition and an isothermal cold wall an experimental and numerical study has been made for Ra numbers from 105 to 107 and inclinations from 20 to 90 deg with the horizontal. For vertical enclosures the heat transfer by natural convection was about 19 percent above that for an isothermal hot plate. This decreases with angle of inclination, to 9 percent at 20 deg. For solar collectors it means that for cases where the absorber plate is not isothermal the convective losses can be about 10 percent above the usually expected values.


1999 ◽  
Vol 121 (2) ◽  
pp. 108-115 ◽  
Author(s):  
L. Tang ◽  
Y. K. Joshi

In the present paper, a methodology is described for the integrated thermal analysis of a laminar natural convection air cooled nonventilated electronic system. This approach is illustrated by modeling an enclosure with electronic components of different sizes mounted on a printed wiring board. First, a global model for the entire enclosure was developed using a finite volume computational fluid dynamics/heat transfer (CFD/CHT) approach on a coarse grid. Thermal information from the global model, in the form of board and component surface temperatures, local heat transfer coefficients and reference temperatures, and heat fluxes, was extracted. These quantities were interpolated on a finer grid using bilinear interpolation and further employed in board and component level thermal analyses as various boundary condition combinations. Thus, thermal analyses at all levels were connected. The component investigated is a leadless ceramic chip carrier (LCCC). The integrated analysis approach was validated by comparing the results for a LCCC package with those obtained from detailed system level thermal analysis for the same package. Two preferred boundary condition combinations are suggested for component level thermal analysis.


Sign in / Sign up

Export Citation Format

Share Document