Machine Learning Techniques for Wideband Spectrum Sensing in Cognitive Radio Networks

2017 ◽  
pp. 43-68
Author(s):  
Sufi Tabassum Gul ◽  
Asad Ullah Omer ◽  
Abdul Majid
2021 ◽  
Author(s):  
Olusegun Peter Awe ◽  
Daniel Adebowale Babatunde ◽  
Sangarapillai Lambotharan ◽  
Basil AsSadhan

AbstractWe address the problem of spectrum sensing in decentralized cognitive radio networks using a parametric machine learning method. In particular, to mitigate sensing performance degradation due to the mobility of the secondary users (SUs) in the presence of scatterers, we propose and investigate a classifier that uses a pilot based second order Kalman filter tracker for estimating the slowly varying channel gain between the primary user (PU) transmitter and the mobile SUs. Using the energy measurements at SU terminals as feature vectors, the algorithm is initialized by a K-means clustering algorithm with two centroids corresponding to the active and inactive status of PU transmitter. Under mobility, the centroid corresponding to the active PU status is adapted according to the estimates of the channels given by the Kalman filter and an adaptive K-means clustering technique is used to make classification decisions on the PU activity. Furthermore, to address the possibility that the SU receiver might experience location dependent co-channel interference, we have proposed a quadratic polynomial regression algorithm for estimating the noise plus interference power in the presence of mobility which can be used for adapting the centroid corresponding to inactive PU status. Simulation results demonstrate the efficacy of the proposed algorithm.


Electronics ◽  
2021 ◽  
Vol 10 (11) ◽  
pp. 1346
Author(s):  
Xinyu Xie ◽  
Zhuhua Hu ◽  
Min Chen ◽  
Yaochi Zhao ◽  
Yong Bai

Spectrum is a kind of non-reproducible scarce strategic resource. A secure wideband spectrum sensing technology provides the possibility for the next generation of ultra-dense, ultra-large-capacity communications to realize the shared utilization of spectrum resources. However, for the open collaborative sensing in cognitive radio networks, the collusion attacks of malicious users greatly affect the accuracy of the sensing results and the security of the entire network. To address this problem, this paper proposes a weighted fusion decision algorithm by using the blockchain technology. The proposed algorithm divides the single-node reputation into active reputation and passive reputation. Through the proposed token threshold concept, the active reputation is set to increase the malicious cost of the node; the passive reputation of the node is determined according to the historical data and recent performance of the blockchain. The final node weight is obtained by considering both kinds of reputation. The proposed scheme can build a trust-free platform for the cognitive radio collaborative networks. Compared with the traditional equal-gain combination algorithm and the centralized sensing algorithm based on the beta reputation system, the simulation results show that the proposed algorithm can obtain reliable sensing results with a lower number of assistants and sampling rate, and can effectively resist malicious users’ collusion attacks. Therefore, the security and the accuracy of cooperative spectrum sensing can be significantly improved in cognitive radio networks.


Author(s):  
Suriya Murugan ◽  
Sumithra M. G.

Cognitive radio has emerged as a promising candidate solution to improve spectrum utilization in next generation wireless networks. Spectrum sensing is one of the main challenges encountered by cognitive radio and the application of big data is a powerful way to solve various problems. However, for the increasingly tense spectrum resources, the prediction of cognitive radio based on big data is an inevitable trend. The signal data from various sources is analyzed using the big data cognitive radio framework and efficient data analytics can be performed using different types of machine learning techniques. This chapter analyses the process of spectrum sensing in cognitive radio, the challenges to process spectrum data and need for dynamic machine learning algorithms in decision making process.


Sign in / Sign up

Export Citation Format

Share Document