Seamless and Secure Communication for 5G Subscribers in 5G-WLAN Heterogeneous Networks

2017 ◽  
pp. 167-184
Author(s):  
Amit Kumar ◽  
Hari Om
2012 ◽  
Vol 482-484 ◽  
pp. 252-255
Author(s):  
Xi Yuan Ma ◽  
Shu Mei Fan ◽  
Myong Soon Park

Wireless Sensor Networks (WSNs) are usually subjected to numerous threats and vulnerable to various attacks. Generally, the key management is considered to be the prerequisite for secure communication in WSNs. In this paper, we present a Localization-based Clustered Key Management (LCKM) which can efficiently enhance the network security and survivability for the clustered heterogeneous networks. LCKM utilizes the seeds to rekey and then localize the key materials, which protects the network from the compromised nodes by reducing the probability of the common key. The security analysis proves that LCKM can prevent more attacks than other protocols.


Author(s):  
B. Adithya ◽  
B. Sathish Babu

Ubiquitous computing has been studied extensively as a post desktop model. Secure communication among various heterogeneous networks is been a challenge in service environment with location dynamism of the nodes. In this paper the authors proposed model for trust worthy communications among devices of various networks in a ubiquitous environment with varied service needs, security needs and computational-storage capacities. The model uses a novel approach for computing trust - adaptive to capacity and services.


Author(s):  
Amolkirat Singh ◽  
Guneet Saini

Many people lose their life and/or are injured due to accidents or unexpected events taking place on road networks. Besides traffic jams, these accidents generate a tremendous waste of time and fuel. Undoubtedly, if the vehicles are provided with timely and dynamic information related to road traffic conditions, any unexpected events or accidents, the safety and efficiency of the transportation system with respect to time, distance, fuel consumption and environmentally destructive emissions can be improved. In the field of computer and information science, Vehicular Ad hoc Network (VANET) have recently emerged as an effective tool for improving road safety through propagation of warning messages among the vehicles in the network about potential obstacles on the road ahead. VANET is a research area which is in more demand among the researchers, the automobile industries and scientists to discover about the loopholes and advantages of the vehicular networks so that efficient routing algorithms can be developed which can provide reliable and secure communication among the mobile nodes.In this paper, we propose a Groundwork Based Ad hoc On Demand Distance Vector Routing Protocol (GAODV) focus on how the Road Side Units (RSU’s) utilized in the architecture plays an important role for making the communication reliable. In the interval of finding the suitable path from source to destination the packet loss may occur and the delay also is counted if the required packet does not reach the specified destination on time. So to overcome delay, packet loss and to increase throughput GAODV approach is followed. The performance parameters in the GAODV comes out to be much better than computed in the traditional approach.


Author(s):  
P. Jeyadurga ◽  
S. Ebenezer Juliet ◽  
I. Joshua Selwyn ◽  
P. Sivanisha

The Internet of things (IoT) is one of the emerging technologies that brought revolution in many application domains such as smart cities, smart retails, healthcare monitoring and so on. As the physical objects are connected via internet, security risk may arise. This paper analyses the existing technologies and protocols that are designed by different authors to ensure the secure communication over internet. It additionally focuses on the advancement in healthcare systems while deploying IoT services.


Sign in / Sign up

Export Citation Format

Share Document