Methods for Linking Drone and Field Hyperspectral Data to Satellite Data

Author(s):  
Muhammad Al-Amin Hoque ◽  
Stuart Phinn
Author(s):  
C. Karakizi ◽  
M. Oikonomou ◽  
K. Karantzalos

An assessment of the spectral discrimination between different vine varieties was undertaken using non-destructive remote sensing observations at the véraison period. During concurrent satellite, aerial and field campaigns, in-situ reflectance data were collected from a spectroradiometer, hyperspectral data were acquired from a UAV and multispectral data from a high-resolution satellite imaging sensor. Data were collected during a three years period (i.e, 2012, 2013 and 2014) over five wine-growing regions, covering more than 1000ha, in Greece. Data for more than twenty different vine varieties were processed and analysed. In particular, reflectance hyperspectral data from a spectroradiometer (GER 1500, Spectra Vista Corporation, 350-1050nm, 512 spectral bands) were calculated from the raw radiance values and then were correlated with the corresponding reflectance observations from the UAV and satellite data. Reflectance satellite data (WorldView-2, 400nm-1040nm, 8 spectral bands, DigitalGlobe), after the radiometric and atmospheric correction of the raw datasets, were classified towards the detection and the discrimination of the different vine varieties. The concurrent observations from in-situ hyperspectral, aerial hyperspectral and satellite multispectral data over the same vines were highly correlated. High correlations were, also, established for the same vine varieties (e.g., Syrah, Sauvignon Blanc) cultivated in different regions. The analysis of in-situ reflectance indicated that certain vine varieties, like Merlot, Sauvignon Blanc, Ksinomavro and Agiorgitiko possess specific spectral properties and detectable behaviour. These observations were, in most cases, in accordance with the classification results from the high resolution satellite data. In particular, Merlot and also Sauvignon Blanc were detected and discriminated with high accuracy rates. Surprisingly different clones from the same variety could be separated (e.g., clones of Syrah), while they were confused with other varieties (e.g., with Riesling).


Sensors ◽  
2021 ◽  
Vol 21 (5) ◽  
pp. 1869
Author(s):  
Yangyang Zhang ◽  
Jian Yang ◽  
Lin Du

Leaf area index (LAI) is a key biophysical variable to characterize vegetation canopy. Accurate and quantitative LAI estimation is significant for monitoring vegetation growth status. ZhuHai-1 (ZH-1), which is a commercial remote sensing micro-nano satellite, provides a possibility for quantitative detection of vegetation with high spatial and spectral resolution. However, the band characteristics of ZH-1 are closely related to the accuracy of vegetation monitoring. In this study, a simulation dataset containing 32 bands of ZH-1 was generated by using the PROSAIL model, which was used to analyze the performance of 32 bands for LAI estimation by using the hybrid inversion method. Meanwhile, the effect of different band combinations on LAI estimation was discussed based on sensitivity analysis and the correlation between bands. Then, the optimal band combination from ZH-1 hyperspectral satellite data for LAI estimation was obtained. LAI estimation was performed based on the selected optimal band combination of ZH-1 satellite images in Xiantao city, Hubei province, and compared with the Sentinel-2 normalized difference vegetation index (NDVI) values and LAI product. The results demonstrated that the obtained LAI map based on the optimal band combination of ZH-1 was generally consistent with the overall distribution of Sentinel-2 NDVI and the LAI product, but had a moderate correlation with Sentinel-2 LAI (R = 0.60), which may not favorably indicate the validity of indirect validation. However, the method of this study on the analysis of hyperspectral data bands has application potential to provide a reference for selecting appropriate bands of hyperspectral satellite data to estimate LAI and improve the application of hyperspectral data such as ZH-1 in vegetation monitoring.


2019 ◽  
Vol 41 (4) ◽  
pp. 1349-1371 ◽  
Author(s):  
Lin Sun ◽  
Xu Yang ◽  
Shangfeng Jia ◽  
Chen Jia ◽  
Quan Wang ◽  
...  

Author(s):  
A. J. Abubakar ◽  
M. Hashim ◽  
A. B. Pour ◽  
K. Shehu

Abstract. The focus of this paper is to comparatively evaluate the performance of ASTER and Hyperion data for target detection of hydrothermal alteration zones associated with geothermal (GT) springs in an unexplored savannah region. The study employed the partial subpixel unmixing Mixture Tuned Match Filtering algorithm for spectral information extraction using the multispectral and hyperspectral satellite data. In both cases, image endmember spectra specifically for kaolinite, alunite, and illite and calcite zones were selected and extracted by using the Analytical Imaging and Geophysics (AIG)-developed processing methods. The results show that the Hyperion, despite its distortions, can effectively discriminate associated alteration zones better than ASTER. Consequently, Hyperspectral data and analysis are thus recommended for use in similar unexplored regions for GT resource detection and monitoring.


2019 ◽  
Author(s):  
M Maktabi ◽  
H Köhler ◽  
R Thieme ◽  
JP Takoh ◽  
SM Rabe ◽  
...  

2011 ◽  
Vol 4 (1) ◽  
pp. 500-502
Author(s):  
Md. Fazlul Haque ◽  
◽  
Md. Mostafizur Rahman Akhand ◽  
Dr. Dewan Abdul Quadir

2007 ◽  
Vol 13 (1s) ◽  
pp. 80-85
Author(s):  
E.B. Kudashev ◽  
◽  
A.N. Filonov ◽  

Sign in / Sign up

Export Citation Format

Share Document