Chapter 12 Time Reversal of Linear and Nonlinear Water Waves

2016 ◽  
pp. 401-436
Author(s):  
A. Chabchoub ◽  
A. Maurel ◽  
V. Pagneux ◽  
P. Petitjeans ◽  
A. Przadka ◽  
...  
PAMM ◽  
2021 ◽  
Vol 20 (1) ◽  
Author(s):  
Marten Hollm ◽  
Leo Dostal ◽  
Hendrik Fischer ◽  
Robert Seifried

Author(s):  
Didier Clamond

Steady two-dimensional surface capillary–gravity waves in irrotational motion are considered on constant depth. By exploiting the holomorphic properties in the physical plane and introducing some transformations of the boundary conditions at the free surface, new exact relations and equations for the free surface only are derived. In particular, a physical plane counterpart of the Babenko equation is obtained. This article is part of the theme issue ‘Nonlinear water waves’.


2005 ◽  
Vol 50 (2) ◽  
pp. 219-234 ◽  
Author(s):  
Nan-Jing Wu ◽  
Ting-Kuei Tsay ◽  
D. L. Young

Author(s):  
Adrian Constantin

This introduction to the issue provides a review of some recent developments in the study of water waves. The content and contributions of the papers that make up this Theme Issue are also discussed.


Author(s):  
Delia Ionescu-Kruse

This paper is a survey of the short-wavelength stability method for rotating flows. Additional complications such as stratification in the flow or the presence of non-conservative body forces are considered too. This method is applied to the specific study of some exact geophysical flows. For Gerstner-like geophysical flows one can identify perturbations in certain directions as a source of instabilities with an exponentially growing amplitude, the growth rate of the instabilities depending on the steepness of the travelling wave profile. On the other hand, for certain physically realistic velocity profiles, steady flows moving only in the azimuthal direction, with no variation in this direction, are locally stable to the short-wavelength perturbations. This article is part of the theme issue ‘Nonlinear water waves’.


Author(s):  
Ali Mohtat ◽  
Solomon Yim ◽  
Alfred R. Osborne

Abstract The survivability, safe operation, and design of marine vehicles and wave energy converters are highly dependent on accurate characterization and estimation of the energy content of the ocean wave field. In this study, analytical solutions of the nonlinear Schrödinger equation (NLS) using periodic inverse scattering transformation (IST) and its associated Riemann spectrum are employed to obtain the nonlinear wave modes (eigen functions of the nonlinear equation consisting of multiple phase-locked harmonic components). These nonlinear wave modes are used in two approaches to develop a more accurate definition of the energy content. First, in an ad hoc approach, the amplitudes of the nonlinear wave modes are used with a linear energy calculation resulting in a semi-linear energy estimate. Next, a novel, mathematically exact definition of the energy content taking into account the nonlinear effects up to fifth order is introduced in combination with the nonlinear wave modes, the exact energy content of the wave field is computed. Experimental results and numerical simulations were used to compute and analyze the linear, ad hoc, and exact energy contents of the wave field, using both linear and nonlinear spectra. The ratio of the ad hoc and exact energy estimates to the linear energy content were computed to examine the effect of nonlinearity on the energy content. In general, an increasing energy ratio was observed for increasing nonlinearity of the wave field, with larger contributions from higher-order harmonic terms. It was confirmed that the significant increase in nonlinear energy content with respect to its linear counterpart is due to the increase in the number of nonlinear phase-locked (bound wave) modes.


2002 ◽  
Vol 462 ◽  
pp. 1-30 ◽  
Author(s):  
P. A. MADSEN ◽  
H. B. BINGHAM ◽  
HUA LIU

A new method valid for highly dispersive and highly nonlinear water waves is presented. It combines a time-stepping of the exact surface boundary conditions with an approximate series expansion solution to the Laplace equation in the interior domain. The starting point is an exact solution to the Laplace equation given in terms of infinite series expansions from an arbitrary z-level. We replace the infinite series operators by finite series (Boussinesq-type) approximations involving up to fifth-derivative operators. The finite series are manipulated to incorporate Padé approximants providing the highest possible accuracy for a given number of terms. As a result, linear and nonlinear wave characteristics become very accurate up to wavenumbers as high as kh = 40, while the vertical variation of the velocity field becomes applicable for kh up to 12. These results represent a major improvement over existing Boussinesq-type formulations in the literature. A numerical model is developed in a single horizontal dimension and it is used to study phenomena such as solitary waves and their impact on vertical walls, modulational instability in deep water involving recurrence or frequency downshift, and shoaling of regular waves up to breaking in shallow water.


Sign in / Sign up

Export Citation Format

Share Document